An Introduction of New Simulation and Optimization Software Application for Long-Term Limestone Quarry Production Planning
Abstract
Long-term limestone quarry production planning is essential to maintain the supply to the cement plant. In which, quarry planners usually attempt to fulfil the complicated calculations, which ensure a consistent supply of raw materials to the cement plant while guaranteeing technical and operational parameters in mining. Traditionally, the calculations are done on a spreadsheet or by trial and error procedure resulting in high additive cost and an increase in product variability. Modern quarry management relies on block models and mathematical algorithms integrated into the software to optimize the long-term limestone quarry production planning. However, this method is potentially sensitive to geological uncertainty in block modelling, resulting in the deviation of the supply production of raw materials. The need for mining intelligently raw material is, therefore, crucial and an increasing issue in the cement industry. In this research, a new simulation and optimization software application called Quarrier is introduced, allowing quarry planners to address the conflicting requirements of long-term limestone quarry production planning while forecasting and mitigating the effects of geological uncertainty on the supply of raw materials for the cement plant. The benefits of this software are demonstrated through a limestone quarry in Vietnam.
This journal permits and encourages authors to post items submitted to the journal on personal websites or institutional repositories both prior to and after publication, while providing bibliographic details that credit, if applicable, its publication in this journal.