Analysis and Forecasting of the Primary Energy Consumption in Poland Using Deep Learning
Abstract
Consumption of fossil energy resources were increased dramatically, due to the economic and population growth. In turn, the consumption of fossil resources causes depletion of resources and contributes to environmental pollution. The European Union's "climate neutrality" initiative requires effective energy management from the member states. By this is meant a resource-efficient and competitive economy in which there is no greenhouse gas emission and where economic growth is decoupled from resource consumption. The article analyzes the level of primary energy consumption in Poland. It was examined whether a 23% drop in energy consumption could be achieved in 2030 compared to the base year and according with energy efficiency assumptions. A methodology for forecasting primary energy consumption based on deep neural networks, in particular on Long Short Term Memory (LSTM) algorithms was also presented.
This journal permits and encourages authors to post items submitted to the journal on personal websites or institutional repositories both prior to and after publication, while providing bibliographic details that credit, if applicable, its publication in this journal.