Investigations of Flame Retardant Properties of Zinc Borate Accompanying with Huntite and Hydromagnesite in Polymer Composites
Abstract
Fires have been a danger to human beings for the centuries. As people lost their lives and property in fires, they tried to fight the fire and their efforts in this area continued increasingly. Unfortunately, it is still not possible to completely reset the risk of starting the fire. But it seems likely to extinguish immediately after the fire has started, and this is very important to save people’s lives. Scientists have been working in this field in recent years; they are concentrated on producing fire-resistant materials using different materials. This can be provided by different ways; either fire-resistant material can be produced new, or the fire resistivity can be provided by incorporating the additive material into a flammable material. In our previous studies, we used huntite and hydromagnesite minerals to give fire resistance property to polymer materials, very successful results were obtained. In this study, huntite and hydromagnesite minerals were used for accompanying with zinc borate in polypropylene composites in order to increase the flame retardant property of a polymeric materials. Different content of minerals were blended with polypropylene, and composites were produced by twin-screw extruder for observing synergistic effect. Scanning electron microscopy (SEM) analyses were conducted to determine the structural and morphological properties of the composites. Thermal properties were determined according to thermogravimetric analysis (TGA). Tensile and three point bending tests were carried out to obtain mechanical properties. Flame retardant performance was evaluated according to UL 94 vertically flammability test. It was concluded that very good synergistic effects were obtained that zinc borate was significantly influential with huntite/hydromagnesite in the flammability characteristics of composites because higher char formation is observed with zinc borate addtion. Moreover, the zinc borate reduced the smoke generated during combustion.
This journal permits and encourages authors to post items submitted to the journal on personal websites or institutional repositories both prior to and after publication, while providing bibliographic details that credit, if applicable, its publication in this journal.