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Abstract 
In various industries, rectangular tanks are commonly used for storing liquids and other materials. The design and optimization of 

these tanks are crucial for ensuring structural integrity and material efficiency. Traditional designs often utilize constant wall 

thickness, which does not align optimally with the stress distribution, leading to potential overuse of materials and increased costs. 

Recent studies have shown that tanks with variable wall thickness, such as trapezoidal cross-sections, can better match stress 

distributions, particularly under hydrostatic loads, resulting in more efficient use of materials. This research aims to build upon 

previous studies by introducing an advanced optimization algorithm based on the Trust Region Gradient Method to further refine 

the cross-sectional design of rectangular tanks. The primary objective is to minimize the material usage while maintaining 

structural safety and performance under various load conditions, including hydrostatic pressure and thermal effects. The proposed 

algorithm iteratively adjusts the tank's wall thickness, seeking an optimal configuration that reduces bending moments and 

material costs. Initial static calculations is verified using the finite difference method, emphasizing energy minimization conditions 

for elastic strain in bent plates on elastic foundations. This approach is compared with traditional discretization methods to 

validate accuracy. The trust region method is then applied to optimize the design, with a focus on achieving a balance between 

structural integrity and economic feasibility. Preliminary results indicate that the trust region gradient method can significantly 

enhance the design process, leading to substantial material savings and improved structural performance. The algorithm's 

effectiveness is demonstrated through case studies comparing tanks with constant and variable wall thickness. This research 

contributes to sustainable construction practices by promoting designs that use materials more efficiently and meet safety 

standards. 
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1. Introduction

Effective water management has become a necessity in the modern world. The increasing frequency of extreme weather events such as 

droughts and floods is affecting larger areas, both urban and rural. In each of these places, appropriate measures must be taken to manage 

water resources [1,2]. Tanks are widely used structures for storing water and other products resulting from technological processes. 

Depending on the material used, tanks can be made of steel, concrete, or plastics. Standardization is often applied to steel and plastic tanks, 

less so to concrete tanks, as these tanks are ready for installation immediately upon delivery, requiring no assembly on site [3]. There has 

been significant development in the design of standard steel tanks for water [3], gas [4], and bulk materials [5]. This development 

facilitates the purchase and installation of tanks, particularly small ones, without the need for administrative permits, thus increasing the 

capacity for proper storage of water, grain, waste, and other products related to various activities. 

Plastic and composite tanks are mainly used for storing waste and water in small facilities [6]. Standardization of reinforced concrete 

tanks primarily concerns smaller structures, as creating watertight joints between components in larger constructions is challenging [7]. 

However, in many cases, reinforced concrete tanks are designed individually, considering the guidelines and needs of the investor and user 

[8]. In such cases, strength considerations and the impact of stored substances on the tank walls, which can act destructively on the 

concrete, are crucial. Despite this, concrete remains a viable construction material for tanks, as modern technologies for protecting 

concrete surfaces from harmful substances stored in tanks are advancing rapidly [9,10]. 

Proper tank design requires knowledge of their statics and the interrelationships between components. Traditional methods, such as the 

method of isolated plates, divide a rectangular tank into individual plates: wall, bottom, and cover. For accuracy, if the difference in 

moments does not exceed 10%, the higher value is taken as representative, while greater differences require methods like Cross's method, 

which distributes the difference in support moments among the plates proportionally to their stiffness [7,8]. 

Tanks are most commonly designed with walls of constant thickness, although trapezoidal cross-section walls are optimal in terms of load-

bearing capacity. This is particularly relevant in structures where the load distribution is triangular, such as with water pressure on walls. Wall 

thickness should increase with depth, which is economical but more challenging to construct [11]. There are numerous publications on tanks 

with constant wall thickness [12,13], describing proper design principles and possible errors and corrective measures [7,8]. 

Loads acting on tanks can be categorized as permanent, such as the self-weight and backfill soil weight for underground tanks, and 

variable environmental and operational loads, such as snow load, vehicle load on the ground surface, earth pressure, and soil friction on the 

wall for tanks constructed using the caisson method. Thermal effects, less frequently described in literature and less understood by 
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designers, can impact structures through uniform heating or cooling of the entire cross-section, or by creating temperature differences 

between the element's surfaces [14]. Thinner walls in the upper part, which are typically more exposed to thermal influences, are justified 

because bending moments caused by temperature differences increase proportionally to the square of the wall thickness. There is less 

scientific literature on tanks with linearly varying wall thickness, especially those subjected to thermal variations [15,16]. This issue has 

been addressed in works [11,17], which included numerical analysis of plates with tapered thickness subjected to temperature effects [17] 

and numerical calculations for tanks with varying wall thickness verified experimentally [11]. 

The aim of this work is to refine the cross-sectional design of rectangular tanks by introducing an advanced optimization algorithm 

based on the Trust Region Gradient Method. The primary objective is to minimize material usage while maintaining structural safety and 

performance under various load conditions, including hydrostatic pressure and thermal effects. The research aims to optimize the tank's 

wall thickness, reduce bending moments and material costs, and improve structural efficiency, thereby contributing to sustainable 

construction practices by promoting material-efficient designs that meet safety standards 

2. Materials and Methods

2.1 Finite Difference Method – A Brief Summary 

Static calculations for tanks can be performed using several popular numerical methods. These include methods such as the 

Boundary Element Method (BEM), the Finite Difference Method (FDM), and the Finite Element Method (FEM). Calculation 

software for designing structures like tanks typically relies on FEM. In this work, the FDM is used as an alternative and equally 

effective approach to solve the specified systems of differential equations. This method provides a highly versatile way of solving 

differential equations with given boundary conditions by replacing the derivatives in the equations and boundary conditions with 

appropriate finite differences. Since the function describing the plate deflection is unknown, the ordinates of the surface at a finite 

number of points, called nodes, located at the intersections of the created grid of the calculated object are taken as unknowns [18]. 

The topic of the Finite Difference Method was extensively covered in many outstanding and fundamental scientific works in the 

1970s and 1980s [19-24], which have inspired contemporary authors [25-29]. The FDM has been used in numerical calculations 

for plates [17,29,30], tanks [11-13], and surface girders [31-35]. 

In this work, the condition for the minimum energy of elastic deformation stored in a bent plate - vertical walls of tank, resting 

on an elastic foundation was used. The calculations were carried out traditionally by discretizing the object and creating systems of 

equations. Then, using proprietary calculation solutions, results such as deflections at each point of the division grid were obtained, 

and bending moments at selected points were calculated. 

For a thin plate of thickness ℎ, the differential equation of the deflection surface read [18]: 

 𝐷∇2∇2𝑤 = 𝑞 (1) 

where: 

• 𝐷 =
𝐸ℎ3

12(1−𝜈2)
 is the flexural rigidity of the plate, 

• 𝐸 is the Young's modulus,

• 𝜈 is the Poisson's ratio,

• ∇2∇2𝑤 =
𝜕4𝑤

𝜕𝑥4 + 2
𝜕4𝑤

𝜕𝑥2𝜕𝑦2 +
𝜕4𝑤

𝜕𝑦4 , 

• 𝑤(𝑥, 𝑦) is the transverse deflection,

• 𝑞(𝑥, 𝑦) is a transverse distributed load.

If the plate is supported by an elastic foundation with a modulus 𝐾𝑡 (horizontal stiffness) and 𝐾𝑧 (vertical stiffness), the plate

deflection due to the foundation is: 

𝑤𝐾 = −
𝐾𝑡ℎ2

4
∇2𝑤 + 𝐾𝑧𝑤 (2) 

The influence of in-plane loads on the deflection of a plate. 

𝑤𝑁 = −𝑁𝑥
𝜕2𝑤

𝜕𝑥2 − 2𝑁𝑥𝑦
𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝑁𝑦

𝜕2𝑤

𝜕𝑦2 + 𝑝𝑥
𝜕𝑤

𝜕𝑥
+ 𝑝𝑦

𝜕𝑤

𝜕𝑦
(3) 

where: 

• 𝑁𝑥 is a normal force in x direction,

• 𝑁𝑦 is a normal force in y direction,

• 𝑁𝑥𝑦 is a shear force in x-y plane;

• 𝑝𝑥 is a distributed load in x direction,

• 𝑝𝑦 is a distributed load in y direction.

The deflection due to a temperature change Δ𝑇 can be accounted for by considering the thermal stresses induced in the plate.

𝑞𝑇 = −(1 + 𝜈)
𝐷𝛼𝑡

ℎ
∇2Δ𝑇 (4) 

where 𝛼𝑡 is the coefficient of thermal expansion. The influence of transverse forces on the deflection of a plate can be

formulated: 

𝑞𝑅 = −
𝐷

𝐻
∇2 [𝑝𝑧 +

1

6
(

𝜕𝑚𝑥

𝜕𝑥
+

𝜕𝑚𝑦

𝜕𝑦
)] (5) 

where: 

• 𝑝𝑧 is the transverse distributed load,

• 𝑚𝑥 is a distributed moment with respect to x axis,
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• 𝑚𝑦 is a distributed moment with respect to y axis.

• 𝐻 = 5 6⁄ 𝐺ℎ - is a coefficient.

The coefficient D/H reads:
𝐷

𝐻
=

𝐸ℎ3

12(1+𝑣2)
[

5

6
ℎ

𝐸

2(1+𝜈)
]

−1
=

ℎ2

5(1−𝜈)
(6) 

Combining all the above expressions, we get: 

 𝐷∇2∇2𝑤 + 𝑤𝑁 + 𝑤𝐾 = 𝑞 + 𝑞𝑅 + 𝑞𝑇 (7) 

If one assumes the varying stiffness or plate thickness the Equation (7) reads: 

∇2(𝐷∇2𝑤) − 𝐿[𝐷(1 − 𝜈), 𝑤] + 𝑤𝑁 + 𝑤𝐾 = 𝑞 + 𝑞𝑅 + 𝑞𝑇 (8) 

where: 

𝐿(𝐷(1 − 𝜈), 𝑤) = (1 − 𝜈) [
𝜕2𝐷

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2 − 2
𝜕2𝐷

𝜕𝑥𝜕𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
+

𝜕2𝐷

𝜕𝑦2

𝜕2𝑤

𝜕𝑥2 ] (9) 

In the special case where the product 𝐷(1 − 𝜈) is a linear function of the coordinates 𝑥 and 𝑦, the above equation takes a 

simpler form: 

∇2(𝐷∇2𝑤) + 𝑤𝑁 + 𝑤𝐾 = 𝑞 + 𝑞𝑅 + 𝑞𝑇 (10) 

Internal forces and stresses in the plate are defined as follow. The bending moments in the x and y directions, denoted as 𝑀𝑥

and 𝑀𝑦, describe the internal moments generated by bending of the plate. They are given by:

𝑀𝑥 = −𝐷 (
𝜕2𝑤

𝜕𝑥2 + 𝜈
𝜕2𝑤

𝜕𝑦2 + (1 + 𝜈)
𝛼𝑡Δ𝑇

ℎ
) (11) 

𝑀𝑦 = −𝐷 (𝜈
𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 + (1 + 𝜈)
𝛼𝑡Δ𝑇

ℎ
) (12) 

The twisting moment, 𝑀𝑥𝑦, represents the internal moment due to twisting of the plate and is given by:

𝑀𝑥𝑦 = −𝐷(1 − 𝜈)
𝜕2𝑤

𝜕𝑥𝜕𝑦
(13) 

The shear forces in the 𝑥 and 𝑦 directions, denoted as 𝑇𝑥 and 𝑇𝑦, describe the internal forces acting parallel to the plane of the

plate. These are important for assessing the plate's resistance to shear stresses. They are defined as: 

𝑇𝑥 = −𝐷 (
𝜕3𝑤

𝜕𝑥3 + (2 + 𝜈)
𝜕3𝑤

𝜕𝑥𝜕𝑦2
) − (1 − 𝜈)

𝐷𝛼𝑡

ℎ

𝜕Δ𝑇

𝜕𝑥
(14) 

𝑇𝑦 = −𝐷 (
𝜕3𝑤

𝜕𝑦3
+ (2 + 𝜈)

𝜕3𝑤

𝜕𝑦𝜕𝑥2
) − (1 − 𝜈)

𝐷𝛼𝑡

ℎ

𝜕Δ𝑇

𝜕𝑦
(15) 

Normal stresses in the plate in the 𝑥 and 𝑦 directions, denoted as 𝜎𝑥 and 𝜎𝑦, are derived from the bending moments and

describe the internal stress distribution across the thickness of the plate. They are defined as: 

𝜎𝑥 = −
𝐸

1−𝜈2 [𝑧 (
𝜕2𝑤

𝜕𝑥2 + 𝜈
𝜕2𝑤

𝜕𝑦2
)] =

6

ℎ2 𝑀𝑥 (16) 

𝜎𝑦 =
𝐸

1−𝜈2 [𝑧 (𝜈
𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2
)] =

6

ℎ2 𝑀𝑦 (17) 

The solution to the plate bending problem involves finding the deflection 𝑤(𝑥, 𝑦) that minimizes this functional, subject to the 

appropriate boundary conditions. For example, Equation (1) can be written using the central finite difference method as follows: 

𝐷 (
Δ4𝑤𝑖

Δ𝑥4 + 2
Δ4𝑤𝑖𝑗

Δ𝑥2Δ𝑦2 +
Δ4𝑤𝑗

Δ𝑦4
) = 𝑞𝑖,𝑗 (18) 

where: 

Δ4𝑤𝑖 = 𝑤𝑖−2,𝑗 − 4𝑤𝑖−1,𝑗 + 6𝑤𝑖,𝑗 − 4𝑤𝑖+1,𝑗 + 𝑤𝑖+2,𝑗 (19) 

Δ4𝑤𝑖𝑗 = 𝑤𝑖−1,𝑗−1 + 𝑤𝑖−1,𝑗+1 + 𝑤𝑖+1,𝑗−1 + 𝑤𝑖+1,𝑗+1 − 2(𝑤𝑖−1,𝑗 + 𝑤𝑖,𝑗−1 + 𝑤𝑖+1,𝑗 + 𝑤𝑖,𝑗+1) + 4𝑤𝑖,𝑗
(20) 

Δ4𝑤𝑗 = 𝑤𝑖,𝑗−2 − 4𝑤𝑖,𝑗−1 + 6𝑤𝑖,𝑗 − 4𝑤𝑖,𝑗+1 + 𝑤𝑖,𝑗+2 (21) 

Assuming that the stiffness or the plate thickness may vary along the 𝑥 or 𝑦 direction, Equation (1) takes the form: 

∇2(𝐷∇2𝑤)𝑖,𝑗 = 𝑞𝑖,𝑗 (22) 

In this equation, the term 𝐷, representing the flexural rigidity of the plate, is a function of the spatial coordinates 𝑥 and 𝑦. This 

variation is incorporated into the finite difference approximation, resulting in a more complex but accurate representation of the 

plate's behavior. The expanded finite difference form of the equation is: 
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∇2(𝐷∇2𝑤)𝑖,𝑗 ≈
𝐿𝑖+1,𝑗−2𝐿𝑖,𝑗+𝐿𝑖−1,𝑗

Δ𝑥2 +
𝐿𝑖,𝑗+1−2𝐿𝑖,𝑗+𝐿𝑖,𝑗−1

Δ𝑦2 (23) 

where: 

𝐿𝑖,𝑗 = 𝐷𝑖,𝑗 (
𝑤𝑖+1,𝑗−2𝑤𝑖,𝑗+𝑤𝑖−1,𝑗

Δ𝑥2
+

𝑤𝑖,𝑗+1−2𝑤𝑖,𝑗+𝑤𝑖,𝑗−1

Δ𝑦2
) (24) 

𝐿𝑖−1,𝑗  =  𝐷𝑖−1,𝑗  (
𝑤𝑖,𝑗−2𝑤𝑖−1,𝑗+𝑤𝑖−2,𝑗

Δx2 +
𝑤𝑖−1,𝑗+1−2𝑤𝑖−1,𝑗 + 𝑤𝑖−1,𝑗−1

Δ𝑦2
) (25) 

𝐿𝑖+1,𝑗  =  𝐷𝑖+1,𝑗  (
𝑤𝑖+2,𝑗−2𝑤𝑖+1,𝑗+𝑤𝑖,𝑗

Δx2
+

𝑤𝑖+1,𝑗+1−2𝑤𝑖+1,𝑗 + 𝑤𝑖+1,𝑗−1

Δ𝑦2
) (26) 

𝐿𝑖,𝑗+1  =  𝐷𝑖,𝑗+1 (
𝑤𝑖+1,𝑗+1−2𝑤𝑖,𝑗+1+𝑤𝑖−1,𝑗+1

Δx2
+

𝑤𝑖,𝑗+2−2𝑤𝑖,𝑗+1+𝑤𝑖,𝑗

Δ𝑦2
) (27) 

𝐿𝑖,𝑗−1  =  𝐷𝑖,𝑗−1 (
𝑤𝑖+1,𝑗−1−2𝑤𝑖,𝑗−1+𝑤𝑖−1,𝑗−1

Δ𝑥2 +
𝑤𝑖,𝑗−2𝑤𝑖,𝑗−1+𝑤𝑖,𝑗−2

Δ𝑦2
) (28) 

Since the tank walls are analyzed individually, treated as plates fixed at the two side edges and the bottom edge, while the top 

edge remains free. Establishing appropriate boundary conditions in the differential equations is crucial for accurate analysis. These 

boundary conditions ensure the physical constraints and behaviors of the tank walls are properly represented in the mathematical 

model, leading to precise and reliable results in the static calculations. This approach allows for a detailed understanding of the 

stress distribution and deformation of the tank walls under various loading conditions. 

In the finite difference method analysis of the tank walls, it is essential to define specific boundary conditions for both types of 

edges: fixed and free. At the fixed edges, the displacements in all directions (horizontal and vertical) are set to zero. This means 

that the nodes along these edges cannot move or rotate, see Equation (29): 

𝑤𝑖,𝑗 = 0 (29) 

The rotational displacement or slope at these edges is also set to zero, ensuring that there is no angular change at the points of 

fixation. Equation (30)-(31) shows no rotation with respect the x-axis and y-axis, respectivelly: 

(𝜙𝑥)𝑖,𝑗 =
−𝑤𝑖−1,𝑗+𝑤𝑖+1,𝑗

2Δ𝑥
= 0 (30) 

(𝜙𝑦)𝑖,𝑗 =
−𝑤𝑖,𝑗−1+𝑤𝑖,𝑗+1

2Δ𝑦
= 0 (31) 

These conditions simulate the physical scenario where the tank walls are rigidly attached to the surrounding structure, 

preventing any form of movement or deformation at the fixed edges. 

Along the free edge 𝑝, the shear force and bending moment are zero. This reflects the absence of external constraints or 

supports, allowing the edge to move freely. There is no restriction on the displacement along the free edge, meaning it can deform 

under the applied loads. These conditions replicate the real-world situation where the top edge of the tank wall is not restrained, 

allowing it to respond freely to the internal water pressure and other forces. 

(𝑀)𝑝 = 0 (32) 

(𝑇)𝑝 = 0 (33)

Having calculates deflections in all internal nodes of the plate, internal forces and stresses can be computed using again central 

finite difference scheme: 

(𝑀𝑥)𝑖,𝑗 = 𝐷𝑖,𝑗 (
𝑤𝑖−1,𝑗−2𝑤𝑖,𝑗+𝑤𝑖+1,𝑗

Δ𝑥2 + 𝜈
𝑤𝑖,𝑗−1−2𝑤𝑖,𝑗+𝑤𝑖,𝑗+1

Δ𝑦2
) (34) 

(𝑀𝑦)
𝑖,𝑗

= 𝐷𝑖,𝑗 (𝜈
𝑤𝑖−1,𝑗−2𝑤𝑖,𝑗+𝑤𝑖+1,𝑗

Δ𝑥2 +
𝑤𝑖,𝑗−1−2𝑤𝑖,𝑗+𝑤𝑖,𝑗+1

Δ𝑦2
) (35) 

(𝑇𝑥)𝑖,𝑗 = −𝐷 [
Δ3𝑤𝑖

2Δ𝑥3 + (2 − 𝜈) (−
𝑤𝑖−1,𝑗−1−2𝑤𝑖−1,𝑗+𝑤𝑖−1,𝑗+1

Δ𝑦2 +
𝑤𝑖+1,𝑗−1−2𝑤𝑖+1,𝑗+𝑤𝑖+1,𝑗+1

Δ𝑦2
)

1

2Δ𝑥
] = 0 (36) 

(𝑇𝑦)
𝑖,𝑗

= −𝐷 [
Δ3𝑤𝑗

2Δ𝑦3 + (2 − 𝜈) (−
𝑤𝑖−1,𝑗−1−2𝑤𝑖,𝑗−1+𝑤𝑖+1,𝑗−1

Δ𝑥2 +
𝑤𝑖−1,𝑗+1−2𝑤𝑖,𝑗+1+𝑤𝑖+1,𝑗+1

Δ𝑥2
)

1

2Δy
] = 0 (37) 

(𝜎𝑥)𝑖,𝑗 =
6

ℎ𝑖,𝑗
2 (𝑀𝑥)𝑖,𝑗  (38) 

(𝜎𝑦)
𝑖,𝑗

=
6

ℎ𝑖,𝑗
2 (𝑀𝑦)

𝑖,𝑗
(39) 

where: 

Δ3𝑤𝑖 = −𝑤𝑖−2,𝑗 + 2𝑤𝑖−1,𝑗 − 2𝑤𝑖+1,𝑗 + 𝑤𝑖+2,𝑗 (40) 

Δ3𝑤𝑗 = −𝑤𝑖,𝑗−2 + 2𝑤𝑖,𝑗−1 − 2𝑤𝑖,𝑗+1 + 𝑤𝑖,𝑗+2 (41)
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2.2 Trust Region Method for Optimization of Plate Thickness in Tanks 

The Trust Region Method is an iterative optimization technique used to find the minimum (or maximum) of a function. This 

method is particularly suitable for optimizing the linearly varying thickness of plates in tanks, where the objective is to minimize stress 

or deflection while maintaining structural integrity. In the trust region method, at each iteration, a quadratic model is typically used to 

approximate the objective function within a neighborhood of the current iterate. The size of this neighborhood is called the "trust 

region". The method then determines the step to take by solving a subproblem that minimizes the model within the trust region. 

Given an objective function 𝑓(𝑡) that represents the stress or deflection in the tank plate, and its quadratic approximation 

𝑚𝑘(𝑝) at the current thickness distribution 𝑡𝑘, the trust region subproblem is defined as:

min
𝑝

𝑚𝑘(𝑝) = ∇𝑓(𝑡𝑘)𝑇𝑝 +
1

2
𝑝𝑇 𝐵𝑘 𝑝 (42) 

subject to: 
‖𝑝‖ ≤ Δ𝑘 (43) 

where: 

• ∇𝑓(𝑡𝑘) is the gradient of 𝑓 with respect to the thickness distribution 𝑡 at 𝑡𝑘,

• 𝐵𝑘 is an approximation of the Hessian matrix (second derivatives) at 𝑡𝑘,

• 𝑝 is the step to be determined,

• Δ𝑘 is the trust region radius.

For plates with linearly varying thickness, the thickness 𝑡(𝑥) can be expressed as a linear function:

𝑡(𝑥) = 𝑡𝑡𝑜𝑝 + (
𝑡𝑏𝑜𝑡− 𝑡𝑡𝑜𝑝

𝐻
) 𝑥 (44) 

where 𝑡𝑡𝑜𝑝 and 𝑡𝑏𝑜𝑡 are the thicknesses at the top and bottom edges of the plate, respectively, and 𝐻 is the height of the plate.

The objective function 𝑓(𝑡) in this context might represent the total potential energy, the maximum deflection, or the maximum 

stress in the plate. The goal is to find the optimal 𝑡𝑡𝑜𝑝 and 𝑡𝑏𝑜𝑡 that minimize this objective function while satisfying structural

constraints. After solving the subproblem and obtaining the step 𝑝𝑘, the new thicknss distribution is calculated as 𝑡𝑘+1 = 𝑡𝑘 + 𝑝𝑘.

The actual reduction in the objective function is compared with the predicted reduction: 

𝜌𝑘 =
𝑓(𝑡𝑘)−𝑓(𝑡𝑘 + 𝑝𝑘)

𝑚𝑘(0)−𝑚𝑘(𝑝𝑘)
(45) 

Depending on the value of 𝜌𝑘, the trust region radius Δ𝑘 is updated:

• If 𝜌𝑘 is close to 1, the model is good, and the trust region may be expanded.

• If 𝜌𝑘 is close to 0, the model is poor, and the trust region is shrunk.

The Trust Region Method is a robust optimization technique particularly effective for problems where the objective function is 

difficult to approximate accurately over large regions. By iteratively adjusting the trust region size, the method ensures reliable 

convergence to an optimal thickness distribution, resulting in minimized stress or deflection for plates with linearly varying 

thickness in tanks. 

3. Results

In this study, we performed a series of numerical analyses to determine the optimal thickness distribution for tank walls of various 

heights and widths. Specifically, we analyzed tank walls with heights H=3, 4, and 5 meters. For each height, the width of the wall was 

varied in proportion to the height, from 𝐿 = 1 × 𝐻 to 𝐿 = 3 × 𝐻, in increments of one meter. For each geometric configuration of the 

wall, the Trust Region algorithm was employed to find the optimal thicknesses at the top (ℎ𝑡𝑜𝑝) and bottom (ℎ𝑏𝑜𝑡) of the wall. The

objective was to minimize stress and deflection while maintaining structural integrity under a uniform liquid pressure. The liquid has a 

assumed density of 1000 kg/m3, resulting in a hydrostatic pressure distribution along the height of the wall. 

FDM calculations were performed for Poisson’s ratio 𝜈 = 0. The analysis considered a tank with a linearly varying wall 

thickness, being ℎ𝑡𝑜𝑝 at the top and ℎ𝑏𝑜𝑡 at the bottom (Figure 1).

(b) (a) 

Fig. 1 The tank’s wall geometry and loading. 
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For the assumed grid of the selected wall of the tank, which has fixed divisions (dx=dy=0.25m) along the height (y direction) 

and width (x direction) of the plate, the wall thicknesses in each grid cell were calculated using general formulas (see Equation 

(22)-(33)). After solving the system of linear equations (see [18] for more details), the deflection values at all nodes of the grid for 

the tank with linearly varying wall thickness were obtained. Based on the deflections, bending moments and stresses were 

calculated using Formulas (34)-(41).  

To ensure a comprehensive comparison, we also determined the constant wall thickness that would produce similar 

performance metrics. The constant thickness was calculated to match the criteria used in the previous analyses with linearly 

varying thickness. This allowed us to directly compare the effectiveness of the optimized linearly varying thickness against a 

uniform thickness throughout the wall's height. Table 1 presents the results of the analyses, showing the optimal thicknesses and 

corresponding stress and material usage values for each configuration. 

Tab. 1. Optimal value of wall’s thickness for various wall geometries. 

H 

[m] 

L 

[m] 

𝒉𝒕𝒐𝒑

[m] 

𝒉𝒃𝒐𝒕

[m] 

max 𝝈𝒕

[MPa] 

material

m3/m 

𝒉𝒄𝒐𝒏𝒔𝒕

[m] 

max 𝝈𝒕

[MPa] 

material

m3/m 

savings 

[%] 

3 3 0.10 0.15 2.877 0.375 0.13 2.710 0.390 3.8 

3 4 0.12 0.20 2.947 0.480 0.17 2.768 0.510 5.9 

3 5 0.17 0.20 2.934 0.555 0.20 2.801 0.600 7.5 

3 6 0.20 0.25 2.795 0.675 0.23 2.868 0.690 2.2 

3 7 0.22 0.30 2.877 0.780 0.26 2.880 0.780 0.0 

3 8 0.25 0.30 2.903 0.825 0.28 2.980 0.840 1.8 

3 9 0.27 0.30 2.934 0.855 0.30 2.929 0.900 5.0 

4 4 0.19 0.20 2.861 0.780 0.20 2.908 0.800 2.5 

4 5 0.19 0.30 2.602 0.980 0.25 2.805 1.000 2.0 

4 6 0.23 0.30 2.949 1.060 0.28 2.903 1.120 5.4 

4 7 0.29 0.30 2.866 1.180 0.32 2.831 1.280 7.8 

4 8 0.30 0.40 2.854 1.400 0.35 2.958 1.400 0.0 

4 9 0.34 0.40 2.965 1.480 0.39 2.888 1.560 5.1 

4 10 0.38 0.40 2.960 1.560 0.42 2.909 1.680 7.1 

4 11 0.40 0.45 2.900 1.700 0.44 2.981 1.760 3.4 

4 12 0.41 0.50 2.888 1.820 0.46 2.969 1.840 1.1 

5 5 0.24 0.30 2.926 1.350 0.29 2.806 1.450 6.9 

5 6 0.30 0.35 2.609 1.625 0.33 2.990 1.650 1.5 

5 7 0.30 0.40 2.975 1.750 0.37 2.948 1.850 5.4 

5 8 0.37 0.40 2.888 1.925 0.41 2.930 2.050 6.1 

5 9 0.40 0.45 2.930 2.125 0.45 2.940 2.250 5.6 

5 10 0.43 0.50 2.994 2.325 0.49 2.957 2.450 5.1 

5 11 0.49 0.50 2.920 2.475 0.53 2.957 2.650 6.6 

5 12 0.50 0.60 2.938 2.750 0.57 2.921 2.850 3.5 

5 13 0.54 0.60 2.937 2.850 0.58 2.939 2.900 1.7 

5 14 0.57 0.60 2.959 2.925 0.59 2.998 2.950 0.8 

5 15 0.60 0.60 2.917 3.000 0.60 2,917 3.000 0.0 

(a) (b) 

Fig. 2. Displacements and stresses in selected tank’s wall (5×5 m) with refined mesh dx=dy=0.1m. 

4. Discussion

The numerical analyses revealed several key insights. The Trust Region algorithm effectively identified optimal thickness

distributions for each wall configuration. Thicker sections were generally found at the bottom of the walls, where the hydrostatic 

pressure is greatest, while thinner sections were sufficient at the top. Walls with linearly varying thickness showed better 

performance in terms of reduced maximum stress and deflection compared to walls with uniform thickness. The optimized 
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configurations often required less material, providing a more efficient design without compromising structural integrity. As the 

height of the wall increased, the benefits of using an optimized thickness distribution became more pronounced. Wider walls 

required a more nuanced optimization approach to balance the increased load distribution. Figure 2 illustrates several selected 

stress and displacement maps for the tank walls, highlighting the differences between the optimized and constant thickness designs. 

The results from Table 1 and the stress and displacement maps in Figure 2 indicate that the optimization led to material 

savings, particularly for taller and wider walls, where the difference between the optimized and constant thickness designs was 

most significant. This efficiency can translate into cost savings and more sustainable construction practices. The analysis also 

showed that the ratio of height to width of the wall significantly impacts the distribution of moments and stresses. Specifically, 

wider walls behaved more like cantilevers, with significantly higher vertical stresses. This suggests that for constructing a tank with 

a selected volume, ensuring appropriate ratios of wall width to tank height is crucial. This consideration is essential to prevent 

excessive stresses and ensure the structural integrity of the tank. 

It is evident that as the width of the wall increases relative to its height, the structural behavior shifts, resulting in higher 

vertical stresses. Therefore, when designing tanks of a specific volume, careful attention must be given to the width-to-height ratios 

of the walls. Adequate proportions can help in mitigating stress concentrations and achieving a more balanced distribution of 

forces. This aspect of design is critical for maintaining safety and durability, particularly in large-scale tank structures. 

5. Conclusions

This study demonstrates the effectiveness of the Trust Region algorithm in optimizing the thickness of tank walls with linearly

varying thickness. By applying this method, significant improvements in structural performance and material efficiency were 

achieved. The comparison between optimized varying thickness and constant thickness designs validated the advantages of the 

optimization process. The results underscore the importance of considering the height-to-width ratio of the walls to manage stress 

distribution effectively. These findings highlight the potential for cost savings and enhanced safety in tank design, emphasizing the 

need for precise optimization techniques in structural engineering practices. The study provides a robust framework for future 

research and practical applications in the optimization of tank wall thicknesses. 

References 

1. I. Laks, Z. Walczak and N. Walczak, “Fuzzy analytical hierarchy process methods in changing the damming level of a

small hydropower plant: Case study of Rosko SHP in Poland”, Water Resour. Ind., 29, 100204 (2023). doi:

10.1016/j.wri.2023.100204.

2. I. Laks and Z. Walczak, “Efficiency of Polder Modernization for Flood Protection. Case Study of Golina Polder

(Poland)”, Sustainability, 12, 8056 (2020). doi: 10.3390/su12198056.

3. J. Ziólko, J. “Zbiorniki, silosy”, in Poradnik projektanta konstrukcji metalowych: Tom II, edited by W. Bogucki

(Arkady, Warszawa, 1983).

4. J. Ziółko, Zbiorniki metalowe na ciecze i gazy (Arkady, Warszawa, 1986).

5. P. Horajski, L. Bohdal, L. Kukielka, R. Patyk, P. Kaldunski, and S. Legutko, “Advanced Structural and Technological

Method of Reducing Distortion in Thin-Walled Welded Structures”, Materials 14, 504 (2021). doi:

10.3390/ma14030504.

6. W. Buczkowski, H. Mikołajczak and A. Szymczak-Graczyk, “Przykładowa ocena rozwiązań materiałowo-

konstrukcyjnych zbiorników cylindrycznych z żywic poliestrowo-szklanych stosowanych w przydomowych

oczyszczalniach ścieków”, Gaz, Woda i Technika Sanitarna, 12, 25-28 (2005).

7. A. Halicka and D. Franczak, Projektowanie zbiorników żelbetowych. Tom 1. Zbior¬niki na materiały sypkie

(Wydawnictwo Naukowe PWN. Warszawa 2011).

8. A. Halicka and D. Franczak, Projektowanie zbiorników żelbetowych. Tom 2. Zbior¬niki na ciecze (Wydawnictwo

Naukowe PWN, Warszawa 2014).

9. M. Sybis and E. Konował, “Influence of Modified Starch Admixtures on Selected Physicochemical Properties of

Cement Composites”, Materials, 21, 7604 (2022). doi: 10.3390/ma15217604.

10. M. Sybis, E. Konował and K. Prochaska, “Dextrins as green and biodegradable modifiers of physicochemical properties

of cement composites”, Energies, 11, 4115 (2022). doi: 10.3390/en15114115.

11. W. Buczkowski, A. Szymczak-Graczyk and Z. Walczak, “Experimental validation of numerical static calculations for a

monolithic rectangular tank with walls of trapezoidal cross-section”, Bull. Pol. Acad. Sci. Tech. Sci. 65, 799–804 (2017).

doi:10.1515/bpasts-2017-0088.

12. A. Szymczak-Graczyk, “Numerical Analysis of the Bottom Thickness of Closed Rectangular Tanks Used as Pontoons”.

Appl. Sci., 10 (22), 8082 (2020). doi:10.3390/app10228082.

13. A. Szymczak-Graczyk, “Floating platforms made of monolithic closed rectangular tanks”. Bull. Pol. Acad. Sci. Tech.

Sci., 66, 209–219 (2018). doi:10.24425/122101.

14. W. Buczkowski and A. Szymczak-Graczyk, “Monolityczne zbiorniki prostopadłościenne obciążone temperaturą”,

Przegląd Budowlany, 9, 24-29 (2020).

15. W. Buczkowski, “On reinforcement of temperature loaded rectangular slabs”. Arch. Civ. Eng., 54 (2), 315-331 (2008).



 

8          Inżynieria Mineralna – Lipiec - Grudzień 2024 July - December – Journal of the Polish Mineral Engineering Society   

9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning (WMCCAU 2024)  

 
 

16. W. Buczkowski, S. Czajka and T. Pawlak, “Analiza pracy statycznej zbiornika prostopadłościennego poddanego 

działaniu temperatury”, Acta Sci. Pol., Archit., 5 (2), 17-29 (2006). 

17. A. Szymczak-Graczyk, “Rectangular plates of a trapezoidal cross-section subjected to thermal load”, IOP Conf. Ser. 

Mater. Sci. Eng., 603, 032095 (2019). doi:10.1088/1757-899X/603/3/032095. 

18. Z. Kączkowski, Plates. Static Calculations (Arkady, Warszawa, Poland, 2000). 

19. L. H. Donnell, Beams, Plates and Shells (McGraw-Hill, New York, NY, USA, 1976). 

20. P. M. Naghdi, The Theory of Shells and Plates (Handbuch der Physick, Berlin, Germany, 1972). 

21. V. Panc, Theries of Elastic Plates (Academia: Prague, Czech Republic, 1975). 

22. S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Coatings (Arkady, Warszawa, Poland, 1962). 

23. R. Szlilard, Theory and Analysis of Plates. Classical and Numerical Methods (Prentice Hall, Englewood Cliffs: 

Bergen, NJ, USA; Prentice-Hall: Upper Saddle River, NJ, USA, 1974). 

24. A. C. Ugural, Stresses in Plates and Shells (McGraw-Hill: New York, NY, USA, 1981). 

25. M. Son, H. Sang Jung, H. Hee Yoon, D. Sung and J. Suck Kim, “Numerical Study on Scale Effect of Repetitive 

Plate-Loading”, Test. Appl. Sci., 9, 4442 (2019). doi:10.3390/app9204442-19. 

26. B. E. Rapp, “Finite Difference Method”, in Microfluidics: Modelling, Mechanics and Mathematics, Micro and Nano 

Technologies, edited by B. E. Rapp (Elsevier, Amsterdam, The Netherlands, 2017), pp. 623–631. doi:10.1016/B978-

1-4557-3141-1.50030-7. 

27. J. Blazek, “Principles of Solution of the Governing Equations”, in Computational Fluid Dynamics: Principles and 

Applications, edited by J. Blazek (Elsevier, Amsterdam, The Netherlands, 2015), pp. 29–72. doi:10.1016/B978-0-08-

099995-1.00003-8. 

28. M. H. Sadd, “Formulation and Solution Strategies”, in Elasticity, Theory, Applications, and Numerics, edited by M. 

H. Sadd (Academic Press, Elsevier, Cambridge, Massachusetts, USA, 2005), pp. 83–102. doi:10.1016/B978-

012605811-6/50006-3. 

29. K. S. Numayr, R. H. Haddad and M. A. Haddad, “Free vibration of composite plates using the finite difference 

method”, Thin-Walled Struct., 42, 399–414 (2004). doi:10.1016/j.tws.2003.07.001. 

30. A. Szymczak-Graczyk, “Numerical analysis of the impact of thermal spray insulation solutions on floor loading”, 

Appl. Sci., 10(3), 1016 (2020). doi: 10.3390/app10031016. 

31. W. Buczkowski and A. Szymczak-Graczyk “Wpływ różnej grubości i konstrukcji ścian na pracę statyczną 

monolitycznych zbiorników prostopadłościennych”, Acta Sci. Pol., Archit., 7(3) (2008), pp. 23-34. 

32. N. Staszak, T. Garbowski and A. Szymczak-Graczyk, “Solid Truss to Shell Numerical Homogenization of 

Prefabricated Composite Slabs”, Materials 14, 4120 (2021). doi: 10.3390/ma14154120. 

33. N. Staszak, A. Szymczak-Graczyk and T. Garbowski, “Elastic Analysis of Three-Layer Concrete Slab Based on 

Numerical Homogenization with an Analytical Shear Correction Factor”, Appl. Sci., 12, 9918 (2022). doi: 

10.3390/app12199918. 

34. N. Staszak, T. Garbowski and B. Ksit, “Optimal Design of Bubble Deck Concrete Slabs: Sensitivity Analysis and 

Numerical Homogenization”, Materials, 16, 2320 (2023). doi: 10.3390/ma16062320. 

35. N. Staszak, T. Garbowski and B. Ksit, “Application of the generalized nonlinear constitutive law in numerical 

analysis of hollow-core slabs”, Arch. Civ. Eng., 68 (2) (2022), pp. 125-145. doi: 10.24425/ace.2022.140633. 




