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Abstract 
The present paper deals with the energy dissipation problem in viscoelastic continuously inhomogeneous stepped shafts under 

time-dependent angles of twist. The shafts analyzed in the paper have circular cross-section. Common solution of the energy 

dissipation problem is derived. Statically determinate as well as statically indeterminate shafts are considered. The viscoelastic 

behavior of the shafts is treated by models representing systems of springs and dashpots under time-dependent shear strain. The 

shafts are continuously inhomogeneous along the radius of the cross-section. Because of this, the shaft properties are continuously 

distributed along the radius. The common solution for the energy dissipation is obtained by analyzing the stresses and strains in 

the dashpots of the viscoelastic models (actually, this approach uses the fact that in models with springs and dashpots the energy is 

dissipated by the dashpots). An example illustrating the application of the common solution is presented. The dissipated energy 

(DE) is derived also by direct integration in the time domain for verification. The DE in the statically determinate shafts is 

compared with this in an indeterminate shaft. It is demonstrated that the common solution is applicable also when the shafts are 

under angles of twist whose number is less that the number of the shaft portions. 
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1. Introduction 

Structural members of circular cross-section (shafts, axles) subjected to torsion are applied as components of various machines, 

mechanisms and constructions in different areas of engineering [1 - 3].  Development of analyses which consider different aspects of 

the viscoelastic behavior of the shafts is necessary for guaranteeing the fulfillment of their load resisting purposes.  

        One of the specific peculiarities of the behavior of shafts made of viscoelastic engineering materials is the energy 

dissipation. When the shafts mechanical behavior is treated by viscoelastic models representing systems of springs and dashpots, the 

energy is dissipated by the dashpots.  

       The aim of the present paper is to derive common solution of the energy dissipation problem in stepped shafts which are 

subjected to angles of twist varying continuously with time. It should be noted that for the time being the energy dissipation analyses 

of shafts under torsion deal with separate cases and no attempt for deriving common solution of this problem has been made [4 - 7]. 

Thus, the present paper fills up this emptiness in the scientific investigations. The shafts studied here have circular cross-section. 

Besides, since using of continuously inhomogeneous (functionally graded) materials for manufacturing of various structural 

components is an important trend in the modern engineering [8 - 10], it is assumed that the shafts studied here are continuously 

inhomogeneous along the radius of the cross-section. Shafts of common configuration with arbitrary number of portions of different 

radius of cross-section are considered. The shafts viscoelasic behavior is treated by models having arbitrary number of springs and 

dashpots. Common solution of the energy dissipation is derived for both statically determinate and statically indeterminate shafts 

under an arbitrary set of varying with time angles of twist. The common solution is applied for a shaft with two portions under 

angles of twist varying in sine law with time. The solution is verified by using an approach for determination of the DE based on a 

direct integration in the time domain. Results indicating how the energy dissipation is influenced by the shaft size, the loading 

parameters and the material inhomogeneity are presented. 
 

2. Common Solution 

The stepped shaft to be considered first in this section of the paper is given in Figure 1.  

 
Fig. 1. Common schema of stepped shaft. 
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For generality the number of portions in the shaft is taken arbitrary (the number is denoted by m ). The shaft has circular 

cross-section. The radius of the cross-section of the j-th portion of the shaft is jR . The length of the j-th portion is jl . The shaft 

right end is rigidly fixed. The material of the shaft is continuously inhomogeneous along jR . The shaft is under angles of twist, 

mj  ...,,...,,, 21 , as shown in Figure 1. The laws for change of the angles of twist with time, t , are known in advance. 

The angles of twist are related to the shear strains, pfj , on the shaft surface by applying the integrals of Maxwell-Mohr. Thus, 

j  is   
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where 

                                                                                mj ,,2,1 = .                                                                    (2) 

Relations (1) can be used to determine pfj  for a given set of j . The shear strains, shj , in the j-th portion of the shaft can 

be presented by  
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where  

                                                                                  jRR 0 .                                                                      (4) 

Determination of pfj  and shj  where mj ,,2,1 =  is a preliminary work that should be done before deriving the DE in 

the shaft under consideration.  

The viscoelastic behavior of the shaft is treated by a viscoelastic model representing a system of springs and dashpots. In such 

models, the energy is dissipated by the dashpots. The number of dashpots in the model is n . Thus, the specific strain energy, ju0 , 

in the dashpots for the j-th portion of the shaft is given by 

                                                                          shjiji

ni

i

ju 
2

1

1

0 
=

=

= ,                                                               (5) 

where shji  is found by (3), ji  is the shear stress in the i-th dashpot. The subscript, j , in (5) refer to the j-th portion of the 

shaft. ji  is defined by 

                                                                              shjijiji  = ,                                                                        (6) 

where ji  is the coefficient of viscosity, shji  is the first derivative with respect to time.   

The DE, U , in the shaft is found by integrating ju0  in the shaft portions 
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where jA  is the area of the cross-section of the j-th shaft portion. 

 
Fig. 2. Common schema of statically indeterminate stepped shaft. 

 

Common solution of the DE is obtained also for the statically indeterminate shaft in Figure 2. The shear strains, pfj , on the 

shaft surface can be derived from the following equations: 

 



 

 Inżynieria Mineralna – Lipiec - Grudzień 2024 July - December – Journal of the Polish Mineral Engineering Society 3 

9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning (WMCCAU 2024) 

                                                                         0
1

1 ==
=

=

j

j

pfj
mj

j

l
R


 ,                                                             (8) 

 

                                                                             j

j

pfj
mj

j

j l
R


 

=

=

=
2

,                                                                (9)  

where j  is a given set of angles of twist. Equation (8) reflects the fact that the angle of twist, 
1 , of the shat left end is zero 

due to the clamping. Then the DE can be determined by applying (5), (6) and (7).  

 

3. Illustrative Example 

First, a statically determinate shaft is considered (Figure 3). 

 
FIGURE 3. Stepped shaft with two portions. 

 

 The shaft has two portions, 
21QQ  and 32QQ . The shaft is under torsion so that the angles of twist, 

1  and 
2 , vary with 

time according the following dependences: 

                                                                            ( )tB  sin11 = ,                                                                 (10) 

 

                                                                            ( )tB  sin22 = ,                                                                (11) 

where 
B1 , 

B2  and   are parameters.  

 
Fig. 4. Schema of viscoelastic model. 

 

By using (1), (10) and (11), we derive 
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The specific strain energy in portion, 
21QQ , of the shaft is determined first. The viscoelastic behavior of the shaft is described 

by the model shown in Figure 4. The model is a system of two springs and two dashpots. The model is under shear strain, 1pf , 

that is expressed by the first formula in (12). By analyzing the equilibrium of the springs and dashpots in the viscoelastic model in 

Figure 4 and after performing mathematical manipulations, we obtain 
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In formulas (13), (14), (15) and (16), 11sh  and 11  are the strain and the stress in the dashpot with coefficient of viscosity, 

1 , while 12sh  and 12  are the strain and the stress in the dashpot with coefficient of viscosity, 2 .  

In formulas (13), (14), (15), (16), (17) and (18), 
1G  and 

2G  are the shear moduli of the springs, 
1  and 2  are the 

coefficients of viscosity of the dashpots (Figure 4). The distributions of 
1G , 

2G , 
1  and 2  along the radius of the shaft cross-

section are 
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where subscripts, pf  and cr , refer to the surface and the centre of the shaft, respectively, 1 , 
2 , 3  and 

4  are 

parameters.  

The specific strain energy in the two dashpots for shaft portion,
21QQ , is found by using (5), i.e. 

                                                                    1212111101
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1
shshu   += .                                                    (21)    

In formula (21), 11sh , 11 , 12sh  and  12  are determined by (13), (14) and (15). Formula (21) is applied also to obtain 

the specific strain energy, 02u , in the two dashpots for the shaft portion, 32QQ . For this purpose, 1pf , 
1l , 1R , 

B1  and 

B2  are replaced with 2pf , 
2l , 

2R , 0  and 
B2−  in formulas (13) – (18). Then the DE in the shaft is derived by using (7) 

(the integration is performed with the help of the MatLab).  

        The solution of the DE in the shaft is verified by applying an approach based on a direct integration in the time domain 

[5]. Thus, 01u  is expressed as 

                                                                  dtu shsh

t

)( 12121111
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where the derivatives, 11sh  and 12sh , are found by differentiating the expressions for 11sh  and 12sh  in (13) and (15) 

with respect time. The specific strain energy for shaft portion, 32QQ , is derived by replacing of 11sh , 11sh , 12sh  and 

12sh  with 21sh , 21sh , 22sh  and 22sh  in (22). Here, 21sh , 21sh , 22sh  and 22sh  are the stresses and the first 

derivatives of the strains in the two dashpots for shaft portion, 32QQ .  The DE in the shaft is determined by integrating 01u  and 

02u  in the portions of the shaft. The DE obtained by the two approaches are identical which verifies the solution.  



 

 Inżynieria Mineralna – Lipiec - Grudzień 2024 July - December – Journal of the Polish Mineral Engineering Society 5 

9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning (WMCCAU 2024) 

 

 
Fig. 5. Statically indeterminate stepped shaft with two portions. 

 

The DE is determined also for the statically indeterminate shaft under angle of twist, 
2 , shown in Figure 5. The shaft sizes 

and the viscoelastic model are the same as these of the statically determinate shaft in Figure 3. By using (8), (9), (10) and (11) we 

derive 
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After that the DE in the shaft in Figure 5 is determined by substituting of 01 =B  in the first formula in (17) and than 

applying formulas (13), (14), (15) and (21). Formula (21) is used also to obtain the specific strain energy, 02u , in the two dashpots 

for the shaft portion, 32QQ .  For this purpose, 1pf , 
1l , 1R , 

B1  and 
B2  are replaced with 2pf , 

2l , 
2R , 0  and 

B2−  in formulas (13) – (18). 

Verification is carried-out by using (22) and performing replacements as described for the statically determinate shaft.    

 

Fig. 6. DE as a function of 12 / ll  ratio (curve 1 – at 5.0/ 11 =pfcr GG , curve 2 – at 0.1/ 11 =pfcr GG  and curve 3 – at 

0.2/1 =GG cr ). 

 

Numerical results are derived and displayed in Figure 6, Figure 7 and Figure 8.  
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Fig. 7. DE as a function of 
12 / RR  ratio (curve 1 – at 5.0/ 11 =pfcr  , curve 2 – at 0.1/ 11 =pfcr   and curve 3 – at 

0.2/ 11 =pfcr  ). 

 

The following data are used: 200.01 =l  m, 400.02 =l  m, 005.01 =R  m, 010.02 =R  m, 0012.01 =B  rad, 

0008.02 =B  rad, 0002.0= , 7.01 = , 7.02 = , 8.03 =  and 8.04 = .  

        Figure 6 visualizes the change of the DE in the statically determinate stepped shaft caused by increasing of 
12 / ll  and 

pfcr GG 11 /  ratios. Inspection of the curves in Figure 6 indicates that the DE rises when 
12 / ll  ratio grows. Similar trend is 

observed for the influence of pfcr GG 11 /  ratio, i.e. the DE rises with growth of pfcr GG 11 /  ratio (Figure 6). 

 

 

Fig. 8. DE as a function of pfcr 22 /  ratio (curve 1 – in statically determinate shaft and curve 2 – in statically indeterminate shaft). 

 

The trends in the behavior of the DE in the statically determinate stepped shaft at increase of 
12 / RR  and pfcr 11 /  ratios 

are illustrated in Figure 7. Analysis of the curves in Figure 7 reveals that the DE reduces as a result of rise of 
12 / RR  ratio. It can 

be seen in Figure 7 that rise of pfcr 11 /  ratio leads to growth of the DE. 
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Fig. 9. Stepped shaft under one angle of twist. 

 

The effect of the rise of pfcr 22 /  ratio on the DE in the statically indeterminate shaft is studied. The results are visualized 

in Figure 8. The DE rises when pfcr 22 /  ratio grows (Figure 8). Similar trend can be observed also for the effect of 

pfcr 22 /  ratio on the DE in the statically determinate shaft (Figure 8). It can be seen that the DE in the statically indeterminate 

shaft is lower in comparison with that in the determinate shaft (Figure 8).   

        It should be specified that the common solution of the DE can be applied also in cases when the shafts are under angles of 

twist whose number is less than the number of the shaft portions. Such a case is shown in Figure 9. Here, the shaft is under one 

angle of twist (this is angle, 
1 , varying with time according to (10)). Thus, by applying (1), we have   
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There are two unknowns, 1pf  and 2pf , in equation (24). Therefore, we need one complementary equation. Such equation 

is worked out by considering the equilibrium of the elementary forces on the left and right sides of section, 
2Q , of the shaft, i.e. 
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where 21QQ  and 32QQ  are the shear stresses in shaft portions, 
21QQ  and 32QQ , respectively. These shear stresses are 

defined as ( ) 1121 /
~

RGRpfQQ  =  and ( ) 2232 /
~

RGRpfQQ  =  where G
~

 is the time-dependent shear modulus of the 

viscoelastic model. Equations (24) and (25) are solved with respect to 1pf  and 2pf . Then the DE is derived by (3), (5), (6) and 

(7). Verification is carried-out via (22).   

 

Fig. 10. DE as a function of 
B1  (curve 1 – in shaft under one angle of twist and curve 2 – in shaft under two angles of twist). 

 

Variation of the DE with increasing of 
B1  in the shaft that is under one angle of twist (Figure 9) is shown in Figure 10. 

Increase of 
B1  induces growth of the DE (Figure 10). The DE is plotted versus 

B1  in Figure 10 also for the shaft that is under 

two angles of twist (Figure 3). It can be seen in Figure 10 that the DE in the shaft under one angle of twist is lower.           

It can be generalized that the common solution of the DE is applicable also in the cases when the number of the angles of twist 

is less than the number of the shaft portions. In such cases, complementary equations have to be worked out by considering 

equilibrium of characteristic sections of the shaft (the number of the complementary equations is equal to the difference between 

the number of shaft portions and the number of the angles of twist).     
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It should be mentioned that the viscoelastic model in Figure 4 and the laws for change of the angles of twist (11) and (12) are 

used here with purpose to show how the common solution is applied. Certainly, when solving a particular energy dissipation 

problem, other (appropriate for this particular problem) viscoelastic models and laws for change of the angles of twist can also be 

used.   

         

4. Conclusion 

Common solution of the energy dissipation problem in viscoelastic continuously inhomogeneous stepped shafts under 

predefined time-dependent angles of twist is derived. Both statically determinate and statically indeterminate shafts are considered. 

The common solution is applied for analyzing the energy dissipation in a shaft with two portions. The solution is verified by using 

an approach based on direct integration in time domain. The analysis indicates that the DE rises when 
12 / ll  and pfcr GG 11 /  

ratios grow. Similar trend in the behavior of the DE is observed at growth of pfcr 11 /  and pfcr 22 /  ratios. Increase of 

12 / RR  ratio causes a reduction of the DE. It is observed also that the DE in the statically indeterminate shaft is lower compared 

to that in the statically determinate shaft.     
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