/—\ Common Solution of the Energy Dissipation Problem
k) in Shafts Under Time-Dependent Angles of Twist

Victor Rizov!?

") Department of Technical Mechanics, University of Architecture, Civil Engineering and Geodesy, 1 Chr. Smirnensky Blvd.,
1046 Sofia, Bulgaria, e-mail: v_rizov_fhe@uacg.bg; ORCID: https://orcid.org/0000-0002-0259-3984

http://doi.org/10.29227/IM-2024-02-23
Submission date: 17.04.2024. | Review date: 13.05.2024

Abstract

The present paper deals with the energy dissipation problem in viscoelastic continuously inhomogeneous stepped shafts under
time-dependent angles of twist. The shafts analyzed in the paper have circular cross-section. Common solution of the energy
dissipation problem is derived. Statically determinate as well as statically indeterminate shafts are considered. The viscoelastic
behavior of the shafts is treated by models representing systems of springs and dashpots under time-dependent shear strain. The
shafts are continuously inhomogeneous along the radius of the cross-section. Because of this, the shaft properties are continuously
distributed along the radius. The common solution for the energy dissipation is obtained by analyzing the stresses and strains in
the dashpots of the viscoelastic models (actually, this approach uses the fact that in models with springs and dashpots the energy is
dissipated by the dashpots). An example illustrating the application of the common solution is presented. The dissipated energy
(DE) is derived also by direct integration in the time domain for verification. The DE in the statically determinate shafts is
compared with this in an indeterminate shaft. It is demonstrated that the common solution is applicable also when the shafts are
under angles of twist whose number is less that the number of the shaft portions.

Keywords: Energy dissipation, Common solution, Stepped shaft, Angle of twist, Dashpot, Material inhomogeneity

1. Introduction

Structural members of circular cross-section (shafts, axles) subjected to torsion are applied as components of various machines,
mechanisms and constructions in different areas of engineering [1 - 3]. Development of analyses which consider different aspects of
the viscoelastic behavior of the shafts is necessary for guaranteeing the fulfillment of their load resisting purposes.

One of the specific peculiarities of the behavior of shafts made of viscoelastic engineering materials is the energy
dissipation. When the shafts mechanical behavior is treated by viscoelastic models representing systems of springs and dashpots, the
energy is dissipated by the dashpots.

The aim of the present paper is to derive common solution of the energy dissipation problem in stepped shafts which are
subjected to angles of twist varying continuously with time. It should be noted that for the time being the energy dissipation analyses
of shafts under torsion deal with separate cases and no attempt for deriving common solution of this problem has been made [4 - 7].
Thus, the present paper fills up this emptiness in the scientific investigations. The shafts studied here have circular cross-section.
Besides, since using of continuously inhomogeneous (functionally graded) materials for manufacturing of various structural
components is an important trend in the modern engineering [8 - 10], it is assumed that the shafts studied here are continuously
inhomogeneous along the radius of the cross-section. Shafts of common configuration with arbitrary number of portions of different
radius of cross-section are considered. The shafts viscoelasic behavior is treated by models having arbitrary number of springs and
dashpots. Common solution of the energy dissipation is derived for both statically determinate and statically indeterminate shafts
under an arbitrary set of varying with time angles of twist. The common solution is applied for a shaft with two portions under
angles of twist varying in sine law with time. The solution is verified by using an approach for determination of the DE based on a
direct integration in the time domain. Results indicating how the energy dissipation is influenced by the shaft size, the loading
parameters and the material inhomogeneity are presented.

2. Common Solution
The stepped shaft to be considered first in this section of the paper is given in Figure 1.
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Fig. 1. Common schema of stepped shaft.
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For generality the number of portions in the shaft is taken arbitrary (the number is denoted by IM). The shaft has circular
cross-section. The radius of the cross-section of the j-th portion of the shaft is Rj . The length of the j-th portion is |J- . The shaft

right end is rigidly fixed. The material of the shaft is continuously inhomogeneous along RJ- . The shaft is under angles of twist,
PPy -y (/)J- y++1 @py » @s shown in Figure 1. The laws for change of the angles of twist with time, t, are known in advance.

The angles of twist are related to the shear strains, Y ofj» ON the shaft surface by applying the integrals of Maxwell-Mohr. Thus,

?; is
i=m 7/ .
o= I, &)
i=] Ri
where
j=12,....m. @)

Relations (1) can be used to determine ¥ ;; for a given set of ¢2; . The shear strains, g, , in the j-th portion of the shaft can

be presented by

Y ofj
Venj = R_pJJ R, (3)
where
0<R<R;. @)

Determination of 7 and ¥, where J =1,2,...,M isa preliminary work that should be done before deriving the DE in

the shaft under consideration.
The viscoelastic behavior of the shaft is treated by a viscoelastic model representing a system of springs and dashpots. In such

models, the energy is dissipated by the dashpots. The number of dashpots in the model is N . Thus, the specific strain energy, uOj ,
in the dashpots for the j-th portion of the shaft is given by
i=n 1
Upj = Z Equﬂ/shjir ®)
i=1

where Y shii is found by (3), T is the shear stress in the i-th dashpot. The subscript, j , in (5) refer to the j-th portion of the

shaft. 7 .. is defined by

i
i = 77ji7shji ' (6)
where 77;; is the coefficient of viscosity, 7?5hji is the first derivative with respect to time.
The DE, U , in the shaft is found by integrating UOJ- in the shaft portions
j=m
=1 (A)

where Aj is the area of the cross-section of the j-th shaft portion.
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Fig. 2. Common schema of statically indeterminate stepped shaft.

Common solution of the DE is obtained also for the statically indeterminate shaft in Figure 2. The shear strains, }/pfj , on the

shaft surface can be derived from the following equations:
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j=m

7.
o= R—"”lj:o, ®)
[
j=m
}/ .
?5=2 R_pijj' ©)
=2 R

where ?; is a given set of angles of twist. Equation (8) reflects the fact that the angle of twist, ¢, , of the shat left end is zero
due to the clamping. Then the DE can be determined by applying (5), (6) and (7).

3. lllustrative Example
First, a statically determinate shaft is considered (Figure 3).
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FIGURE 3. Stepped shaft with two portions.

The shaft has two portions, QlQ2 and Q2Q3 . The shaft is under torsion so that the angles of twist, ¢, and @, , vary with
time according the following dependences:

O, =P Sin(wt)’ (10)
P, = Py Sin(at), (11)
where @5, @, and @ are parameters.
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Fig. 4. Schema of viscoelastic model.

By using (1), (10) and (11), we derive
R, ?;R,
V=10 =) vy = (12)
1 2

The specific strain energy in portion, QlQ2 , of the shaft is determined first. The viscoelastic behavior of the shaft is described

by the model shown in Figure 4. The model is a system of two springs and two dashpots. The model is under shear strain, 7 .,

that is expressed by the first formula in (12). By analyzing the equilibrium of the springs and dashpots in the viscoelastic model in
Figure 4 and after performing mathematical manipulations, we obtain

Inzynieria Mineralna — Lipiec - Grudzien 2024 July - December — Journal of the Polish Mineral Engineering Society 3
9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning (WMCCAU 2024)



Vats = RB[ — 5,67 + 68, sin(at) + &, cos(at) |, (13)

1

Ty = 71;_R [5,6.67% + 8, c08(at) - 5,wsin(at)) (14)
1
7/pfl
_Mp 15
7sh12 R1 ( )
0, @R cos|at
” _0: ( ) (16)
R,
where
R G +G 0,G
51=_1(¢1B_¢ZB)' 52:#'53: =2, n
l, i m
0,0. 0.0
S, =—23_ S =——T2"_ 18
‘ a)2+522 ° a)2+522 1o

In formulas (13), (14), (15) and (16), Y41, and Ty are the strain and the stress in the dashpot with coefficient of viscosity,
77, while ¥, and 7,,, are the strain and the stress in the dashpot with coefficient of viscosity, 77, .

In formulas (13), (14), (15), (16), (17) and (18), Gl and G2 are the shear moduli of the springs, 77, and 77, are the

coefficients of viscosity of the dashpots (Figure 4). The distributions of Gl , G2 , 17, and 77, along the radius of the shaft cross-
section are

G -G G,, -G
Gl — Glpf + lCrRﬂl 1pf (Rl _ R)/ﬁ’ G2 — Gpr + zch—ﬂzzpf(Rl _ R),UZ 1 (19)
1 1
Thee =17 5 Moee =77 3
=gy + o (RU = RS gy =+ = (R =R (20)
1 1

where subscripts, pf and CI, refer to the surface and the centre of the shaft, respectively, (4, ii,, Ly and i, are
parameters.
The specific strain energy in the two dashpots for shaft portion, QlQ;2 , is found by using (5), i.e.

Up :E TV s T E To12¥ sh12- (1)
In formula (21), ¥ ¢11. Tt Veni2 and T, are determined by (13), (14) and (15). Formula (21) is applied also to obtain
the specific strain energy, Uy, , in the two dashpots for the shaft portion, Q2Q3- For this purpose, Vo1 |1, Rl, @, and

@,p are replaced with 7 5, |2, RZ, 0 and — @, in formulas (13) — (18). Then the DE in the shaft is derived by using (7)

(the integration is performed with the help of the MatLab).
The solution of the DE in the shaft is verified by applying an approach based on a direct integration in the time domain

[5]. Thus, Uy, is expressed as

t
Up :I (Tn117sh11 + Tn1275h12)dtv (22)
0

where the derivatives, g, and V1o » are found by differentiating the expressions for ¥g,; and ¥, in (13) and (15)
with respect time. The specific strain energy for shaft portion, Q2Q3, is derived by replacing of 7,4, 7}5h11, T2 and
Ventr WIth Tgoi, Vot Tanpp AN Vrop iN (22). Here, Tgipr, Yarors Teppp aNA Vg pp are the stresses and the first
derivatives of the strains in the two dashpots for shaft portion, Q2Q3 . The DE in the shaft is determined by integrating Uy, and

Uy, in the portions of the shaft. The DE obtained by the two approaches are identical which verifies the solution.
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Fig. 5. Statically indeterminate stepped shaft with two portions.

The DE is determined also for the statically indeterminate shaft under angle of twist, ¢, , shown in Figure 5. The shaft sizes

and the viscoelastic model are the same as these of the statically determinate shaft in Figure 3. By using (8), (9), (10) and (11) we
derive

Ry

(23)
|2

Rl
T 0 Vet =P

|1
After that the DE in the shaft in Figure 5 is determined by substituting of @,, = 0O in the first formula in (17) and than

Vot1 =~ 9>

applying formulas (13), (14), (15) and (21). Formula (21) is used also to obtain the specific strain energy, U, , in the two dashpots
for the shaft portion, Q,Q,. For this purpose, ¥ ;. l;. Ry, @5 and @,5 are replaced with ¥ ,. 1,, R,, O and

— @, informulas (13) - (18).
Verification is carried-out by using (22) and performing replacements as described for the statically determinate shaft.
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Fig. 6. DE as a function of |2 /|1 ratio (curve 1 —at G1cr /Glpf = 0.5,curve 2—at GlCr /Glpf =1.0 and curve 3 -at
G, /G=20)

Numerical results are derived and displayed in Figure 6, Figure 7 and Figure 8.
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Fig. 7. DE as a function of R, / R ratio (curve 1~at 70, /77, = 0.5, curve 2 —at 77, /7, =1.0 and curve 3 -at

nlcr /771pf = 20)

The following data are used: |, =0.200 m, I, =0.400 m, R, =0.005 m, R, =0.010 m, ¢,; =0.0012 rad,
@,5 =0.0008 rad, ®=0.0002, 24 =0.7, p, =0.7, p3, =0.8 and g, =0.8.
Figure 6 visualizes the change of the DE in the statically determinate stepped shaft caused by increasing of |2 /|l and

Gy / Gy ratios. Inspection of the curves in Figure 6 indicates that the DE rises when |, /1, ratio grows. Similar trend is

observed for the influence of G, / G, ratio, i.e. the DE rises with growth of Gy, /G, ratio (Figure 6).
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Fig. 8. DE as a function of 7,., / 1, of ratio (curve 1 — in statically determinate shaft and curve 2 — in statically indeterminate shaft).

The trends in the behavior of the DE in the statically determinate stepped shaft at increase of R, / R, and 77, / T]ypr ratios

are illustrated in Figure 7. Analysis of the curves in Figure 7 reveals that the DE reduces as a result of rise of R2 / R1 ratio. It can

be seen in Figure 7 that rise of 77, /ﬂlpf ratio leads to growth of the DE.

Inzynieria Mineralna — Lipiec - Grudzieri 2024 July - December — Journal of the Polish Mineral Engineering Society
9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning (WMCCAU 2024)



I>

Fig. 9. Stepped shaft under one angle of twist.

The effect of the rise of 77,, /772 pf ratio on the DE in the statically indeterminate shaft is studied. The results are visualized
in Figure 8. The DE rises when 77, /772 pf ratio grows (Figure 8). Similar trend can be observed also for the effect of

Noer /772 pf ratio on the DE in the statically determinate shaft (Figure 8). It can be seen that the DE in the statically indeterminate

shaft is lower in comparison with that in the determinate shaft (Figure 8).
It should be specified that the common solution of the DE can be applied also in cases when the shafts are under angles of
twist whose number is less than the number of the shaft portions. Such a case is shown in Figure 9. Here, the shaft is under one

angle of twist (this is angle, @, varying with time according to (10)). Thus, by applying (1), we have

ypfl 7pf2
= I +==1,.
2] R, 1 R, 2

There are two unknowns, ¢, and J ,, in equation (24). Therefore, we need one complementary equation. Such equation

(24)

is worked out by considering the equilibrium of the elementary forces on the left and right sides of section, Q2 , of the shaft, i.e.
R, R,
2 2
[ 277010, R%dR = | 2774,0,RdR, (25)
0 0

where T, and Tg,q5 are the shear stresses in shaft portions, Q,Q, and Q,Q; , respectively. These shear stresses are
defined as 7510, = (}/pflRG)/ R, and 74503 = (7pf2RG)/ R, where G is the time-dependent shear modulus of the

viscoelastic model. Equations (24) and (25) are solved with respect to Y of1 and Vo2 Then the DE is derived by (3), (5), (6) and

(7). Verification is carried-out via (22).

I
[}

0.025
0.020~

8
MR’R:[JX]O 0.015-

&

0.010

0.0051-

1 I | \
0.0 0.0003 0.0006  0.0009  0.0012
& rad

Fig. 10. DE as a function of ¢0;5 (curve 1 —in shaft under one angle of twist and curve 2 — in shaft under two angles of twist).

Variation of the DE with increasing of ¢o5 in the shaft that is under one angle of twist (Figure 9) is shown in Figure 10.

Increase of (o, induces growth of the DE (Figure 10). The DE is plotted versus ¢, in Figure 10 also for the shaft that is under

two angles of twist (Figure 3). It can be seen in Figure 10 that the DE in the shaft under one angle of twist is lower.

It can be generalized that the common solution of the DE is applicable also in the cases when the number of the angles of twist
is less than the number of the shaft portions. In such cases, complementary equations have to be worked out by considering
equilibrium of characteristic sections of the shaft (the number of the complementary equations is equal to the difference between
the number of shaft portions and the number of the angles of twist).
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It should be mentioned that the viscoelastic model in Figure 4 and the laws for change of the angles of twist (11) and (12) are
used here with purpose to show how the common solution is applied. Certainly, when solving a particular energy dissipation
problem, other (appropriate for this particular problem) viscoelastic models and laws for change of the angles of twist can also be
used.

4. Conclusion

Common solution of the energy dissipation problem in viscoelastic continuously inhomogeneous stepped shafts under
predefined time-dependent angles of twist is derived. Both statically determinate and statically indeterminate shafts are considered.
The common solution is applied for analyzing the energy dissipation in a shaft with two portions. The solution is verified by using

an approach based on direct integration in time domain. The analysis indicates that the DE rises when |2 /|1 and G, /G1pf
ratios grow. Similar trend in the behavior of the DE is observed at growth of 77, /nlpf and 1y, /772 pf ratios. Increase of

R2 / R1 ratio causes a reduction of the DE. It is observed also that the DE in the statically indeterminate shaft is lower compared
to that in the statically determinate shaft.
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