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Abstract 
In this study, two methods to numerically analyse a single-storey vertically loaded steel frame structure with initial geometrical 

imperfections are compared. The first method is deterministic, where the initial imperfections, sway of the frame and local bow 

imperfections of the columns are based on the corresponding European standard to design steel structures, Eurocode 3 (EC3). 

The second, probabilistic method, where the imperfections are defined by the random stochastic parameters is using the first 

order reliability method (FORM) along with numerous numerical finite element analyses in order to estimate the ultimate 

resistance of the structure. In this FORM method, the statistical values of these input imperfections are derived from the 

European standard for allowed erection and manufacturer tolerances, and these data corresponds with the experimentally 

measured imperfections on real structures. Material parameters, as Young’s modulus and yield stress are also considered as 

stochastic variables. Design ultimate resistance based on EC3 is compared with the 0.1% quantile of the stochastic ultimate 

resistance of the FORM method. In general, assumptions of the deterministic EC3 approach are sometimes considered as 

overly conservative. The main objective of this study is to verify and evaluate these assumptions by comparison with more 

precise probabilistic method. Moreover, for both methods (EC3 and FORM), the resistance is determined under two loading 

modes, one by increasing of the force load, the other by prescribed displacement. The loading conditions of these two loading 

modes are applied analogically to each other, hence similar resistances for the corresponding method are expected. However, 

this assumption needs to be verified within the probabilistic analysis conditions, what is the secondary objective of this paper. 
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1. Introduction 

Consideration of the initial imperfections during the global analysis of steel frame structures is important, as these might 

influence the load bearing capacity significantly [1]. The initial imperfections might be divided into 3 main groups: material, 

structural and geometrical [2] [3]. The geometrical imperfections are limited by erection and manufacturing tolerances, and are 

present in two forms: global (sway or the structure floor, or so called “out-of-plumb”), and local (bow imperfections of members, 

e.g. columns). This study utilizes stochastic methods for modelling the initial geometrical imperfections in a 3D steel frame 

numerical model, with focus on global and local imperfection as random stochastic parameters. The cross-sectional geometrical 

imperfections are excluded, as well as material imperfections. 

The initial geometrical imperfections might be considered by several methods: 

- Notional horizontal forces (NHF) method, where the effects of the initial sway imperfections are replaced by system of 

equivalent horizontal forces (opposite to each other) applied at the base and head of each column. The initial local bow 

imperfections are then replaced by systems of equivalent horizontal forces (of the uniform direction) applied at the base and 

head of each column, and line load of the same resultant but opposite direction to these nodal forces. This approach is 

allowed in various steel design standards, e.g. mentioned also in the chapter 5.3.2(7) of the European standard 1993-1-1 [4], 

and was used in research study by Liew et al. [5]. 

- Scaling of the elastic buckling mode (EBM) method requires to conduct linear elastic buckling (eigenvalue buckling) on a 

structure of perfect geometry, and to scale the selected (usually first) buckling mode in order to approximate the imperfect 

geometry. This method was used e.g. by Gu et al. [6]. However, there might be certain risk if there is coincidence in the first 

and the second buckling mode [7]. This method is continuously improved e.g. by Aguero et al., with certain extension to non-

uniform cross-sections [8]. Due to plastic deformations, the final failure shape may deviate from the shape predicted by the 

elastic buckling mode. Hence, it is possible to conduct plastic second-order analysis to determine the final failure shape, 

which is scaled to obtain the initial imperfect geometry [9]. This approach might be however overly conservative [10], as the 

collapse geometry is induced at the initiation of the structural analysis. Guidelines for linear combination of several first 

eigenmodes along with recommended scale factors is provided by Shayan et al. [10] in order to define the geometrical 

imperfections for 2D frame structures. Another approach involves scale factors based on the estimation of the entropy of the 

buckling mode [11]. 

- Reduction of the model stiffness by using of 85% value of the material elastic modulus was suggested by Kim [12], which is 
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easy to implement, however this approach has not been fully verified by probabilistic approach [10]. 

- Direct modelling of the initial geometrical imperfections by the offset of the nodal coordinates from the original position is 

the most straightforward, as it directly introduces the geometry change, but rather complex as the geometry alternation of 

each member of large structure might require significant work, or robust algorithms to be defined. In global frame analysis, 

the pattern of the imperfection is often chosen to be the worst case scenario in order to maximize the destabilizing effects, for 

example, global sway of the multi-storey structure introduced into one direction by provisions of chapter 5.3.2(3) EN 1993-1-

1 [4]. In some cases, these assumptions might be overly conservative and lead to uneconomical design [10]. 

In order to model the initial geometrical imperfections in the most rational way, the utilization of the probabilistic methods 

(reliability analyses), and treating of these imperfections as stochastic (random) variables is the most suitable approach [13]. The 

nature of geometrical imperfections is described the most realistically if the probabilistic methods are combined with the direct 

modelling of the geometrical imperfections [10]. However, this approach is the most difficult and demanding on computational 

time. Hence, these statistical methods are useful for the verification of other more feasibly utilized (mostly deterministic) methods, 

as pointed also by Machowski et al. [14], or by Ding et al. [15]. Two main classes of reliability methods are recognized in the 

European standard EN 1990 [16]: 

- Full probabilistic methods, which require not only statistical data of the resistances (material, geometry parameters), but also 

actions (loads), hence are not used so frequently. 

- First order reliability method (FORM), which belongs to one of the most important methods for the evaluation of structural 

reliability, mainly in combination with the advanced methods of the numerical analyses, mainly the finite element method 

(FEM), along which the FORM is often, e.g. by Faber [17] or Zhao [18]. In order to determine the structural reliability by the 

FORM, stochastic parameters of the actions might be omitted under standard loading conditions. 

The objective of this study is to verify the ultimate resistance of a single-storey vertically loaded geometrically imperfect steel 

frame structure determined by the numerical finite element analysis utilizing the deterministic approach of modelling the initial 

geometrical imperfections in accordance with the assumptions of the European standard EC 3 [4]. The provisions of the EC 3 are 

sometimes considered as overly conservative [10], hence the main objective of this paper is to verify the ultimate resistance of the 

selected single-storey steel frame geometry. The ultimate resistance of structure will be compared with the results based on the 

probabilistic FORM method, where the statistical values for geometrical imperfections are based on the tolerance criteria of the EN 

1090-2:2018 [19], which corresponds with the experimentally measured imperfections by Lindner [20]. In all the cases, the initial 

geometrical imperfections are modelled directly (by offset of the nodal coordinates). The sensitivity study between the input 

parameters and the output ultimate resistance will be conducted for the probabilistic approach [21], [22]. Ultimate resistances under 

two analogically defined loading modes (by force and by prescribed displacement), are compared. It is assumed, that very similar 

results are obtained for these two modes of corresponding modelling method. However, this assumption needs to be verified within 

the probabilistic analysis conditions, what is the secondary objective of this paper. The results are described and discussed in detail.  

 

2. Numerical Finite Element Model 

2.1 Model Geometry, Boundary Conditions 

Numerical model of one storey 3D frame structure is modelled by 1D structural beam finite elements. Cross-sections of the 

members are depicted in the Figure 1, and their geometries are available in online table [23] (the radius of filler r [23] has been 

neglected though). Span of the columns is 5 m in both directions, and height 4.5 m (Figure 1). At the base level (z = 0 coordinate) 

of each column, all the 6 degrees of freedom (DoF) are constrained. The columns are oriented in a way that the “less rigid axis of 

the cross-section” is parallel with x-axis of the global coordinate system (GCS). Between the column and horizontal beam, ideally 

rigid connections are considered. Columns are divided into 10 finite elements (FE) each, and horizontal beams into 5 FE each. This 

numerical model has been created using ANSYS software [24]. 

 

 
Fig. 1. Frame geometry 

 

2.2 Material and initial geometrical imperfections, model #EC3 

All structural members (columns and horizontal beams) are considered to be of steel S355 material grade [4]. Bilinear material 

model is defined with elastic modulus E = 210 GPa, and rather negligible kinematic hardening condition, with tangent modulus 

equal to 5% of E after the yield stress of 355 MPa is reached. 

Initial geometrical imperfections are considered in accordance with chapter 5.3.2 of the EC3 [4], therefore the initial sways as 

1/244.9, for sway in both GCS directions, x and y (derived from the basic sway of 1/200, height reduction factor αh = 0.94 and the 

reduction factor αm = 0.866 [4]). Initial local imperfections of the columns are based on the table 5.1 of EC3 [4] as 1/200 for 



 

 Inżynieria Mineralna – Lipiec - Grudzień 2024 July - December – Journal of the Polish Mineral Engineering Society 3 

9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning (WMCCAU 2024) 

amplitude of the bow shape (half of the sinus function wave) in the x-axis of the GCS, noted as LIx, and 1/150 for the amplitude in 

the y-axis of the GCS, noted as LIy. The absolute values of all these imperfections are then obtained by multiplying above 

mentioned relative ratios with the storey (column) height. 

2.3 Material and initial geometrical imperfections, model #FORM 

For the stochastic approach, the material model remains the same, but the elastic modulus E is defined by the mean value of 

210 GPa, and standard deviation of 10.5 GPa. Yield stress fy of S355 steel is considered by the mean value of 393.8 MPa, with 

standard deviation 22 MPa [3]. 

Local bow imperfections of the columns, LIx and LIy, are considered by mean value of 0 and the standard deviation of 1/2000 

based on the manufacturing tolerances standard [19], and so called “2 sigma rule”. Due to reduction of the stochastic input 

parameters, the local imperfections for one direction of all the columns is considered to be the same, hence, there are only two 

parameters LIx and LIy. 

Standard deviation of sway (global imperfection) of the frame structure is also derived from the manufacturing tolerance 

standard [19], for both, x and y GCS directions considered as 1/600. This value also corresponds with values used by Shayan et al. 

[10], and measurements by Lindner and Gietzel [20]. Mean value of both sways is 0. 

2.4 Loading modes and analyses 

Geometrically and materially nonlinear imperfect analyses (GMNIA) are conducted using ANSYS software [24]. Full Newton-

Raphson equation formulation has been used. Altogether, 4 types of analyses are conducted, based on 2 aspects: method of loading 

(either by prescribed displacement D, or by increasing force F), and the analysis approach overall (stochastic #FORM or 

deterministic #EC3). These 4 types of analyses are furthermore noted as #EC3-D, #EC3-F, #FORM-D and #FORM-F. For each 

type of analysis, the resultant reaction in the vertical direction, Rz, is being monitored, based on which the ultimate resistance Nu is 

determined. 

 

2.5 Loading by increasing force (F) vs. prescribed displacement (D) 

For all the cases, the load is applied through 4 corner nodes of the frame structure (see green arrows in the Figure 1, points A – 

D). In cases, where the loading is done by increasing force, the Ultimate resistance of the frame structure Nu is equal to the sum of 

vertical reactions Rz of the last converged increment of the analysis. An automatic algorithm to handle the sizes of force 

increments was used, with the smallest possible force increment of 5 kN, what is less than 0.06% of the expected ultimate 

resistance value (based on the results of variant #EC3-F), what is considered as satisfactory precise. In cases, where the load is 

applied by the prescribed displacement, increase of the vertical displacement in z-direction is applied to all 4 nodes simultaneously. 

Analogically to previous force loading, automatic algorithm is used, where the maximal displacement increment is 0.04 mm. 

 

2.6 Stochastic #FORM vs. deterministic #EC3 method 

In case of #EC3 approach, where all the input parameters are deterministic, one analysis is conducted in order to obtain the 

ultimate resistance Nu,EN, which is considered to be the design resistance, as the design values of the input parameters are used. In 

case of the #FORM approach however, for each numerous random parameter realizations needs to be calculated during the analysis 

process. For each of two cases (#FORM-D and #FORM-F), 2000 realizations of 6 stochastic input parameters (2 local and 2 global 

imperfections, 2 material parameters E and fy) were analysed numerically. Advanced Latin Hypercube Method (ALHS) [25] was 

used to generate these random inputs within OptiSLang software [26]. For each random realization the ultimate resistance Nu is 

obtained. Subsequently, the design resistance Nu,FORM is determined as the 0.1% quantile of the Nu set, which might be 

determined by the EC0 [16] by equation: 

   NuNuNudRNuFORM,u ..N  −=−= 8380
    (1) 

where αR is the sensitivity factor for FORM, βd is reliability index [16], μNu and σNu are mean value and the standard 

deviation of the corresponding set of Nu respectively. This assumption results in probability of the ultimate resistance being 

smaller then Nu,FORM of 0.1183% (hence approximately 0.1% quantile) [27]. FORM method has been used also in previous 

studies [28], [29] and [30]. 

 

3. Results 

The results of all the analysed cases (4 types of analyses: #EC3-D, #EC3-F, #FORM-D and #FORM-F, as explained above) are 

summarized in the Table 1 in the last two columns Nu,FORM and Nu,EN for the #FORM and #EC3 approach respectively. 
 

Tab. 1. Results of the ultimate resistances Nu [kN]. 

Loading #FORM #EC3 
Mean St. dev. CoV [%] Nu,FORM  Nu,EN 

Force (F) 11 355 1 012 8.92 8 277 8 919 

Displacement (D) 11 361 1 010 8.89 8 290 8 930 
 

3.1 Force loading 

Correlation matrix (Pearson linear correlation) between the random input and the monitored output parameter of the ultimate 

resistance is plotted in the Figure 2 a. The parameter values were considered in absolute values for the purpose of this correlation 

matrix. Ant-hill plot of the ultimate resistance and the sway in y-axis direction is depicted in the Figure 2 b. 
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(a) (b) 

Fig. 2. (a) Linear correlation matrix (in absolute values) between the input and output parameters for the #FORM-F approach; (b) Ant-hill plot 

of the ultimate resistance vs. sway in y-axis direction for the #FORM-F approach. 
 

3.2 Loading by the prescribed displacement 

The correlation matrix between the input and output parameters for approach #FORM-D depicted in the Figure 3 a is almost 

the same as in case of the approach #FORM-F (Figure 2 a), the differences are only very negligible. Load-displacement (L-D) 

curves of all 2000 random realization of the #FORM-D approach are plotted in the Figure 3 b (grey curves). Displacement of the 

loading points is considered. Three selected random realizations are highlighted: #1946, #1601 and #1097, as representation of 

various possible shapes after reaching the peak of the L-D curve. 

 

 
 

(a) (b) 

Fig. 3. (a) Linear correlation matrix (in absolute values) between the input and output parameters for the #FORM-D approach; (b) Load-
displacement curves of all the 2000 random realizations for the #FORM-D approach. 

 

In most cases, it was feasible to obtain also the decreasing branch of these L-D curves #1097. In some cases, the convergence 

issues occurred either shortly after (like random realization #1601), or directly at reaching of the peak point (like in case of #1946). 

At the peak points of the L-D curves, the stress in steel material of column base or head reached the yield stress value, and 

plasticity began to develop. Equivalent plastic strains of selected cases plotted in the last converged step of the loading process are 

depicted in the Figure 4. Therefore, for the case of random realization #1946, this is at the peak of the L-D curve (at the ultimate 

resistance), and for the realization #1097 this is in the point of the largest vertical displacement (last point of the x-axis of the 

graph). 

 

ABS Li x Li y sw x sw y E f y N u
1, 000 - 0, 021 0, 010 - 0, 008 0, 004 - 0, 017 0, 003

1.00 -0.02 0.01 -0.01 0.00 -0.02 0.00
1, 000 - 0, 021 0, 010 - 0, 008 0, 004 - 0, 017 0, 003

- 0, 021 1, 000 - 0, 018 0, 016 - 0, 039 - 0, 007 - 0, 046

-0.02 1.00 -0.02 0.02 -0.04 -0.01 -0.05
- 0, 021 1, 000 - 0, 018 0, 016 - 0, 039 - 0, 007 - 0, 046

0, 010 - 0, 018 1, 000 - 0, 009 - 0, 045 0, 000 - 0, 087

0.01 -0.02 1.00 -0.01 -0.05 0.00 -0.09
0, 010 - 0, 018 1, 000 - 0, 009 - 0, 045 0, 000 - 0, 087

- 0, 008 0, 016 - 0, 009 1, 000 - 0, 002 - 0, 008 - 0, 857

-0.01 0.02 -0.01 1.00 0.00 -0.01 -0.86
- 0, 008 0, 016 - 0, 009 1, 000 - 0, 002 - 0, 008 - 0, 857

0, 004 - 0, 039 - 0, 045 - 0, 002 1, 000 0, 014 0, 371

0.00 -0.04 -0.05 0.00 1.00 0.01 0.37
0, 004 - 0, 039 - 0, 045 - 0, 002 1, 000 0, 014 0, 371

- 0, 017 - 0, 007 0, 000 - 0, 008 0, 014 1, 000 0, 233

-0.02 -0.01 0.00 -0.01 0.01 1.00 0.23
- 0, 017 - 0, 007 0, 000 - 0, 008 0, 014 1, 000 0, 233

0, 003 - 0, 046 - 0, 087 - 0, 857 0, 371 0, 233 1, 000

0.00 -0.05 -0.09 -0.86 0.37 0.23 1.00
0, 003 - 0, 046 - 0, 087 - 0, 857 0, 371 0, 233 1, 000

LI x

sw y

Li y

sw x

E

f y

N u

ABS Li x Li y sw x sw y E f y N u
1, 000 - 0, 018 - 0, 025 - 0, 004 0, 013 0, 012 0, 016

1.00 -0.02 -0.03 0.00 0.01 0.01 0.02
1, 000 - 0, 018 - 0, 025 - 0, 004 0, 013 0, 012 0, 016

- 0, 018 1, 000 0, 018 0, 008 - 0, 020 0, 029 - 0, 027

-0.02 1.00 0.02 0.01 -0.02 0.03 -0.03
- 0, 018 1, 000 0, 018 0, 008 - 0, 020 0, 029 - 0, 027

- 0, 025 0, 018 1, 000 - 0, 008 - 0, 029 0, 014 - 0, 086

-0.03 0.02 1.00 -0.01 -0.03 0.01 -0.09
- 0, 025 0, 018 1, 000 - 0, 008 - 0, 029 0, 014 - 0, 086

- 0, 004 0, 008 - 0, 008 1, 000 0, 027 0, 003 - 0, 850

0.00 0.01 -0.01 1.00 0.03 0.00 -0.85
- 0, 004 0, 008 - 0, 008 1, 000 0, 027 0, 003 - 0, 850

0, 013 - 0, 020 - 0, 029 0, 027 1, 000 0, 012 0, 351

0.01 -0.02 -0.03 0.03 1.00 0.01 0.35
0, 013 - 0, 020 - 0, 029 0, 027 1, 000 0, 012 0, 351

0, 012 0, 029 0, 014 0, 003 0, 012 1, 000 0, 224

0.01 0.03 0.01 0.00 0.01 1.00 0.22
0, 012 0, 029 0, 014 0, 003 0, 012 1, 000 0, 224

0, 016 - 0, 027 - 0, 086 - 0, 850 0, 351 0, 224 1, 000

0.02 -0.03 -0.09 -0.85 0.35 0.22 1.00
0, 016 - 0, 027 - 0, 086 - 0, 850 0, 351 0, 224 1, 000

LI x

sw y

Li y

sw x

E

f y

N u
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(a) (b) 

Fig. 4. Equivalent plastic strains of selected random realizations of the #FORM-D approach, in the last converged step of analysis: (a) random 

realization #1946; (b) random realization #1097. 

4. Discussion 

In case of the #FORM approach, the correlation matrixes between the input and output parameter (ultimate resistance) are very 

similar, with rather negligible differences (Figure 2 a and Figure 3 a) whether the frame structure is loaded by force or prescribed 

displacement. The ant-hill plots of selected variable and ultimate resistance looked in both of these cases also very similar (slightly 

different due to randomness, but of the same global shapes). 

The L-D curves (Figure 3 b) in case of #FORM-D approach might be divided into three main groups based on their global 

shape in the decreasing branch of L-D diagrams. In most cases of the random realizations, the L-D curves were rather smooth near 

their peak points, and it was feasible to capture also significant part of the decrease branch without convergence difficulties (as in 

case of random realization #1097). For some cases, there was rather sharp and pointy peak of the L-D curve, followed by rather 

large drop-down of the force the structure can withstand, and the convergence problems occurred either almost immediately or few 

more steps after this drop-down (as in case of #1097). Few random realizations (like #1946) encountered more severe divergence 

of solution just at the peak point of the ultimate resistance. 

In case the load is introduced by forces applied in 4 loading point (A – D as depicted in the Figure 1), the vertical 

displacements of these loading points might differ during the loading process of analysis. Practically there will always be certain 

differences in the displacement of these points (either due to imperfections or numerical errors). These differences are evaluated by 

the coefficient of variation (CoV) of the vertical displacement of these 4 loading points (A – D) for the analysis #EC3-F and 

depicted graphically in dependence on the load (sum of vertical reaction) in the Figure 5. In the last converged step, the vertical 

displacement of nodes A – D (Figure 1) were 5.414, 5.367, 5.465 and 5.414 mm, with the mean value of 5.415 mm, standard 

deviation of 0.035 mm, therefore CoV equal to 0.64% (what is the last value of the graph in the Figure 5). 

On the other hand, when the load is applied by the prescribed displacement, the vertical displacement of all these 4 loading 

nodes are the same at each step of the analysis process, what might be expressed graphically in the Figure 5 as the orange line of 

CoV = 0. For this case #EC3-D, the vertical displacement of each loading point is 5.542 mm at the ultimate resistance (peak of the 

L-D curve). 

 
Fig 5. Coefficient of variation (CoV) of the vertical displacements of 4 loading points in case of #EC3-F analysis. 

 

In case of perfectly symmetric structure with no initial imperfection, the vertical displacements of these loading nodes would 

be expected to be the same also in case of loading by force, #EC3-F. However, mainly due to introduced initial geometrical 

imperfections (sway of the structure), the displacements of these nodes slightly differs during the analysis process, with initial CoV 

of circa 0.4% in case of #EC3-F (Figure 5). 

It is evident, the loading by prescribed displacement, where these displacements are forced to be the same introduces certain 

latent constrain into the model, as in real structure, there is no such bond between the vertical displacement of these points. 

However, the relative differences between ultimate resistances in case of force loading (F) and displacement loading (D) were 

approximately 0.12% and 0.16% for #EC3 and #FORM analysis respectively (Table 1), hence considered very negligible. 

More significant differences are observed between the ultimate resistances based on #FORM and #EC3 approach, circa 7.76% 

and 7.72% for the loading by force (F) and prescribed displacement (D). These are mostly caused by the fact that the elastic 

modulus E is considered by its mean value for the #EC3 analyses, whereas for the #FORM analyses, the stochastic nature of this 

parameter causes decreasing of the 0.1% quantile of the ultimate resistance. There is significant positive correlation between the E-
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modulus and Nu (circa 0.36 – see the Figure 2 a and Figure 3 a). 

Positive correlation, as expected, is also between yield stress and Nu, around 0.23. The most significant correlation, -0.85, is 

between Nu and the absolute value of sway in GCS y-axis, which causes bending around the cross-section axis of the smallest area 

moment of inertia of the HEB profile. Noticeable correlation of -0.09 is the between the ultimate resistance and sway in the other 

direction, which causes bending around the cross-section axis of the largest area moment of inertia. Local imperfections, LIy and LIx 

have rather negligible impact on the ultimate resistance, with correlations of values approaching zeroes (Figure 2 a and Figure 3 a). 

 

5. Conclusion 

In this study, the ultimate resistance of a single storey vertically loaded geometrically imperfect steel frame structure 

determined in accordance with the European standard EC3 [4] has been verified. First order reliability method (FORM) along with 

the direct stochastic modelling of initial geometrical imperfections have been used to predict the ultimate resistance Nu. Statistical 

values of the imperfections were based on the tolerance standard EN 1090-2:2018 [19], and corresponds with experimental data by 

Lindner [20]. The difference in these ultimate resistance values is below 8%, with higher resistance value predicted by the EC3 

approach. Therefore, the provisions of the European standard EC3 does not seem to be overly conservative for this specific case of 

frame geometry. 

Moreover, secondary objective of the study was to verify two loading methods during the numerical analysis process in order 

to determine the ultimate resistance Nu, loading by increasing force, and by prescribed displacement. These two types of loading 

have been compared for the deterministic approach of the EC3, as well as for the stochastic approach of the FORM method. In both 

cases, the differences in the estimated values of the ultimate resistance Nu were below 0.2%, hence deemed as very negligible. 

Additionally, in the FORM analyses, a sensitivity analysis has been conducted to examine the interaction between input 

variables and the ultimate resistance output through linear correlation matrices. These correlation matrixes are almost the same in 

both types of loading, whether by force or prescribed displacement. Correlation values are meaningful and follow expected 

patterns. 
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