Modeling the Impact of Hydraulic Fracturing of Amber-Bearing Rocks by a Flooded Jet in the Erosion Chamber on Mining Productivity

Valerii KORNIYENKO¹, Yevhenii MALANCHUK², Vitalii ZAIETS³, Mykola KOZIAR⁴, Olexandr VASYLCHUK⁵, Wiktoria SOBCZYK⁶

¹) Doctor of Engineering, Professor, Department of Mineral Deposits Development and Mining Engineering, National University of Water and Environmental Engineering, Soborna str, 11, Rivne, Ukraine
²) Doctor of Engineering, Professor, Department of Automation, Electrical Engineering and Computer-Integrated Technologies, National University of Water and Environmental Engineering, Soborna str, 11, Rivne, Ukraine
³) PhD, Associate Professor, Department of Mineral Deposits Development and Mining Engineering, National University of Water and Environmental Engineering, Soborna str, 11, Rivne, Ukraine; email: v.v.zayets@nuwm.edu.ua
⁴) Doctor of Pedagogical Sciences, Professor, Department of Theoretical Mechanics, Engineering Graphics and Machine Sciences, National University of Water and Environmental Engineering, Soborna str, 11, Rivne, Ukraine
⁵) PhD, Associate Professor, Department of Mineral Deposits Development and Mining Engineering, National University of Water and Environmental Engineering, Soborna str, 11, Rivne, Ukraine
⁶) Prof. DSc, PhD, Eng. Faculty of Energy and Fuels, Dept. of Sustainable Energy Development, AGH University of Science & Technology, Krakow, Poland

http://doi.org/10.29227/IM-2024-01-105

Submission date: 13-05-2024 | Review date: 24-06-2024

Abstract

The article discusses the concept of socio-economic and strategic development of the Rivne region (Ukraine), especially the exploration, testing and industrial exploitation of strategic mineral resources. The concept envisages the use of energy-efficient technologies for raw material extraction, especially for amber deposits. It points out that conventional methods of amber extraction are harmful to the environment, and suggests the use of complex methods, such as mechanical and hydraulic technologies.

The article examines the challenge of implementing geotechnological methods at mining enterprises and assesses its complexity in mining science and practice. Scientific research in this area has been conducted, but comprehensive studies of the sampling and extraction methods of amber are still significant and relevant for the national interest.

Moreover, the article reports the results of research on the formation of a jet in a hydraulic monitor and the application of a telescopic hydraulic monitor to extend the range of rock fragmentation, including an analysis of jet parameters and the dynamics of hydraulic rock breaking, such as amber-bearing rocks. The conclusions relate to the linear expansion of the jet, the reduction of axial velocity with the increase of hydrostatic pressure and the efficiency of the telescopic hydromonitor to extend the fragmentation range.

Keywords: amber, hydromonitor, submerged jet, destruction, parameters

Introduction

The article outlines the concept of socio-economic and strategic development of the Rivne region of Ukraine, focusing on the exploration, testing and industrial exploitation of strategic mineral resources, located in the subsoil of this region. The concept proposes the creation and implementation of innovative energy-saving technologies for raw material extraction at various stages of sampling, testing and development of deposits, enhancing their energy efficiency through automation of technological processes, reducing costs, and ensuring environmental sustainability of operating conditions. Among other minerals, the development of amber deposits has been identified as a priority. However, the conventional and widespread open method is harmful to the environment. Analytical review and experience indicate that such technologies should rely on the use of integrated extraction methods that combine both mechanical and hydraulic technologies.

Evaluation of the problem status has revealed that the successful implementation of geotechnological methods at mining enterprises is one of the most promising tasks in this area, but also very challenging in mining science and practice.

To date, scientists have conducted research and achieved scientific results on this problem in the leading schools of mining and related sciences, but comprehensive studies of sampling and extraction methods, technology parameters for a significant improvement in the extraction completeness cannot be applied to amber deposits.

Therefore, the development of theoretical and applied foundations of mechanical-hydraulic technology for testing, trial operation and development of amber deposits is an urgent scientific and practical problem of important national importance.

1. Disintegration of Host Rocks by Hydromonitor Jets

The jet formation in the hydraulic monitor depends on the water flow encountering different supports on its way to the nozzle, which cause turbulization and cavitation of the flow, reducing the quality and parameters of the hydraulic monitor jet. The jet is finally formed in the nozzle, which transforms the static pressure of water into the kinetic energy of the jet, and as the nozzle cross-section decreases with a constant water flow rate, its speed increases. Meanwhile, the head loss in the nozzle increases, which is proportional to the square of
the flow rate. In the final section of the nozzle, static pressure without head loss is converted into velocity head.

The speed of the jet departure, the water flow rate and the diameter of the hydraulic monitor nozzle are determined by the formulas:

$$u_s = \phi \sqrt{2gH}$$ \hspace{1cm} (1)

$$Q = \mu S_{n1} \sqrt{2gH}$$ \hspace{1cm} (2)

$$d_n = 0.52 \frac{Q}{\sqrt{H}}$$ \hspace{1cm} (3)

- S_{n1} – cross-sectional area of the nozzle outlet;
- H – pressure;
- Q – consumption;
- ϕ – speed ratio ($\phi = 0.92–0.9b$);
- $\mu = \alpha \phi$;
- α – jet compression ratio ($\alpha=1$).

According to Prandtl's boundary layer theory, the jet dispersion is caused by the turbulent exchange between it and the surrounding fluid, and the viscosity is the reason for the formation of vortices at the interface between the jet and the liquid. These vortices impede the jet motion and increase its mass by drawing in fluid from the outside. Figure 1 illustrates the jet structure common to all types and its main elements.

The jet structure is defined by geometric (length of the initial and main jet sections, expansion angle) and hydraulic (initial flow speed from the nozzle, axial speed and flow speed across the jet cross-section) parameters [1-5].

The structure and initial parameters of the jet match the conditions for the water flow formation in the channels. Turbulence of the water flow in the supply channel, irregularity of the longitudinal speed profile of the jet, turbulence of the water flow at the nozzle entrance, and cavitation at high heads are factors that reduce the jet compactness and, consequently, its effective length. Besides them, the jet parameters are affected by the viscosity and density of the medium where the jet propagates. Hydraulic and geometric parameters determine the most important jet indicators in contact with the rock - impact force and specific dynamic pressure [6-11].

The decay of a free submerged jet is caused by its expansion due to turbulent exchange with the environment under the effect of inertial forces and surface tension [12-16]. In a non-free flooded jet, the same viscous friction forces and medium resistance have a greater role because of its higher density compared to the jet substance density (Figure 2).

The medium density can increase due to its pressure increase, for example, hydrostatic, because of the production deepening. As a result, the hydrodynamic parameters of the flooded jet worsen. This happens during hydraulic sandblasting of oil well bottomhole zones. The results of measuring the dynamic pressure of the jet at different depths are shown in figure 3. The graph shows that hydrostatic pressure up to a depth of 200–300 meters significantly deteriorates the jet parameters. Studies have also revealed that the effect of the medium density increase with the hydrostatic pressure increase is related to the presence of air bubbles in the liquid flowing out through the nozzle.

The hydromonitor jet, when traveling in the air at a certain distance from the nozzle at the end of the initial section, almost falls apart and can be described by a statistical analysis of the individual elements of the moving water-air mixture. The general form of the fluid mechanics equations for turbulent motion of discrete media has no solution.

Some researchers [23-28, 32] have found empirical relationships of jet parameters on the distance to the nozzle for specific conditions.

Hydromonitor jets can virtually break rocks of any hardness. However, jet fracture is mainly used in the development of weakly cohesive and loose rocks (sands, loams, clayey sandstones, silstones, etc.) and less frequently semi-rocky rocks (coal, mudstones, marls, shales, limestone sandstones, and so on) [33-39].

According to the results of many experimental studies, it has been determined that the destruction mechanism is due to the simultaneous action of various forces and depends on the characteristics of rocks and the conditions of the jet flow [40-43]. With the destruction of weakly cohesive and loose rocks as a result of the pulsating action of the jet, the bond between the individual particles of the erosion rock is broken. As a result of filtration of part of the water into the pores of loose rocks, they are moistened and wetted, which leads to a change in the adhesion force of the particles. In addition, in an unflooded face, the mass of water of the jet, which accumulates in the funnel, bursts it and, as a result, stresses arise.

Fig. 1. Diagram of the flooded jet:

- r_0 – nozzle radius;
- α – pole of jets;
- u_0 – initial jet outflow velocity; um – the speed of the jet along its axis; u – velocity of the jet at an arbitrary point along the cross-section; r – current jet radius; l – current jet length; l_1 – jet length given pole

Rys. 1. Schemat zalanego strumienia:

- r_0 – promień dyszy;
- α – słup dysz;
- u_0 – początkowa prędkość wypływu strumienia; um – prędkość strumienia wzdłuż jego osi; u – prędkość strumienia w dowolnym punkcie przekroju; r – aktualelny promień strumienia; l – aktualna długość strumienia; l_1 – długość strumienia na danym biegunie.
in the massif, contributing to the emergence of cracks and the detachment of individual pieces of rock.

The shear resistance of cohesive soils is expressed by Coulomb’s formula

$$\tau = \sigma_s \tan \phi$$

(4)

σ_s – effective normal voltage;
τ – shear stress;
ϕ – angle of internal friction;
c – specific adhesion.

For cemented sands and similar rocks

$$\tau = c + (\sigma - p_G)\tan \phi$$

(5)

σ – full normal voltage;
p_G – neutral voltage equal to the hydrostatic pressure of water in the pores. For loose sands, you can take the specific adhesion to be zero.

To break weakly cohesive and loose rocks, the jet pressure at the contact must exceed the shear resistance [45-48].

The structure of the massif can be destroyed by creating a hydraulic gradient for very loose water-saturated soils and quicksand, which have a specific ratio of fractions and a degree of water saturation.

Investigation of hydrodynamic characteristics of the jet in mechanical-hydraulic extraction of amber. The study involved measuring the dynamic pressure of the flooded jet along its axis and across its cross-section at various distances from the nozzle depending on the nozzle diameters, water pressure, and the effect of the hydrostatic pressure of the amber deposit on the jet parameters.

To conduct field studies on the exposed layer of the Klesiv amber deposit in the Rivne region, a bench installation was built (Figure 4). A layer with a thickness of 3 meters from top to bottom consists of different-, medium- and fine-grained host rock, the strength of which is characterized by an adhesion coefficient of 0.03, 0.035 and 0.045 MPa. The telescopic barrel is placed at a distance from the face and closed with a jet cut-off to avoid erosion when measuring the fixed water pressure on the nozzle. Before the experiment, the pit was filled with water to a depth of more than 1 meter. In the course of the experiment, the time of operation of the jet and the pressure of water on the nozzle were fixed. After the experiment, the hydraulic mixture was pumped out of the chamber by a hydraulic elevator, and the formed cavity was measured [50, 53-54, 56, 58].

The bench installation enabled the experiment conditions to be as close as possible to the full-scale ones, to vary the pressure of the pressure water in front of the nozzle in a wide range and to measure the dynamic pressure of the jet along the axis and in its different sections.

It is well known that destructive processes are quite hard to model with physical similarity. It will be shown later that even a more stable process of mineral transportation is quite hard to model.

The dynamic pressure was measured by a receiving nozzle, which moved in three mutually perpendicular planes with the help of a system of adjusting bolts. The experiment started with mounting, centering and securing the nozzle and breaker plate. Then, a container measuring 2.5×1.5×1.5 m was filled with water, air was released from the impulse.
tubes, the set pressure on the nozzle was set and measurements were taken.

As a result of the experiments, the distribution of the dynamic pressure of the jet along its axis for nozzles of different diameters was obtained (Figure 5). After processing the experimental data and presenting them in the form of a dimensionless dependence, it was established that this dependence of the tested nozzles and pressures at a hydrostatic pressure of 1 m of water column is described by an equation similar to [61-69]

\[u_0 - u_t = \frac{0.96}{0.29 + \frac{r_n}{r_a}} \]

(6)

\(u_0 \) – initial jet outflow velocity;

\(l \) – jet length;

\(u_t \) – axis jet velocity;

\(r_n \) – nozzle radius;

\(a_0 \) – jet structure coefficient at low hydrostatic pressure (a0 = 0.068).

On the stand, the distribution of the flow velocity along the cross-sections of the jet from different nozzles in the pressure range of 0.4–1.6 MPa at a distance from 1 to 20 nozzle diameters was determined. Figure 6 shows velocity diagrams in different cross-sections of a jet with a 23 mm nozzle. In the boundary layer, the flow velocity is low and its value fluctuates greatly due to the turbulent exchange of the jet and the environment. Therefore, in order to identify the pattern of expansion of the jet of the hydromonitor, there was The dependence of the flow velocity on the distance on the axis of the jet \(r_{\text{50\%}} \), at which the velocity of the jet is half of the axial velocity in the same section, is constructed in a dimensionless form \(u=0.5 u_t \) (Figure 6 a, b)

\[\frac{u}{u_t} = \exp \left[\left(\frac{r}{r_{\text{50\%}}} \right)^{\frac{1}{2}} \right] \]

(7)

Experimental data also show a linear expansion of the jet with an opening angle of \(\alpha = 20^\circ \)

\[\frac{r}{r_{\text{50\%}}} = \sqrt{\frac{u_t}{u}} \]

(8)

Study of the influence of the nozzle immersion depth on the parameters of the flooded jet. A special bench installation consisted of a chamber, which is a sealed pipe segment with a diameter of 400 mm and a length of 1500 mm, where the barrel of the hydraulic monitor is inserted. A measuring impulse tube of the pressure sensor is inserted from the other end of the chamber along the axis of the nozzle, which is secured and centered with a locking device.

The experiment starts with the installation and fixation of the nozzle and the receiving impulse tube at distances of 4, 10 and 20 nozzle diameters. When water is delivered to the chamber through the nozzle, the required value of hydrostatic pressure corresponding to the nozzle immersion is set in the
chamber using a relief valve and a pressure gauge. Then, the value of the axial dynamic pressure of the jet is measured.

The effect of hydrostatic pressure on the axial velocity in the jet increases with a decrease in the pressure at the nozzle outlet and practically does not depend on the nozzle diameters. The graph in Figure 7 shows that in the same jet cross-sections at a constant initial pressure with increasing hydrostatic pressure, the axial velocity decreases according to a linear law.

\[\frac{u_m}{U_0} = 1 - kp_0 \] \hspace{1cm} (9)

\(k \) – angular coefficient depending on initial pressure at nozzle inlet. For the conditions of the experiment \(k = 0.12 - 0.0054 \).

In the semi–empirical theory of the submerged jet [70, 73], the initial and boundary conditions of its flow are taken into account by the coefficient of the flow structure (a), empirically. Under our conditions, a dependence was obtained for different initial water pressures

\[a = \frac{1}{c - bp_0} \] \hspace{1cm} (10)

\(c \) – a constant equal to 16;
\(b \) – research coefficient.

Values of coefficient \(b \) are determined according to experimental data. For pressures \((p_0)\) 0.4; 0.8; 1.2; 1.6; 2.0 MPa; the \(b \) values are respectively 1.950; 1.471; 1.002; 0.560; 0.100.

The productivity of hydraulic fracturing per cycle was determined by dividing the volume of the product by the time of its formation. The specific water flow rate per 1 m³ of destroyed mineral was calculated as the ratio of water flow through the nozzle to the mineral volume destroyed during this cycle. Specific energy intensity was defined as the ratio of jet power to hydraulic fracture productivity per cycle.

Figure 8 shows the dynamics of the host rock destruction. The graph shows three stages in the destruction process. At the first stage, a narrow channel 1.1–1.7 m long is formed intensively, the extraction volume reaches 27%; in the second – the channel is expanded and deepened, the extraction volume increases to an average of 57%; At the third stage, the destruction productivity drops sharply, on average, the extraction volume is 16% and the channel length hardly increases, reaching about 2 m after 2–2.5 minutes.

As the face moves away from the nozzle, the fracture rate decreases (Figure 9, a), and the specific water flow rate increases (Figure 9, b). The distance from the face, at which the destruction of the mineral occurs, increases with an increase in the diameter of the nozzle. For example, with a water pressure of 1.5 MPa and nozzles of 11, 15, 23 mm, this distance is 1.2, respectively; 1.8; 2.05 m (Figure 10). As the water pressure increases, the fracture rate increases, and the specific water flow rate decreases and remains practically constant at a pressure of 1–1.5 MPa. The same happens when the diameter of the nozzle increases.
The productivity of destruction of a mineral flooded by a jet depending on \(p_0 = 0.5–2 \) MPa, \(d_n = 11–23 \) mm, \(L_p \leq 2 \) m is described by empirical dependence (Figure 10).

One way to improve fracture performance is to use a special hydromonitor head, in which the jet of the side front nozzle rotates around the face perimeter. The head rotation is due to the jet reactive force. The jet of the central nozzle makes a cut in the host rock layer, and the rotating jet of the side nozzle, with one exposure plane, reflects the rock and widens the cut. As a result, a cavity will be formed, the size of which depends on the angle of the side nozzle inclination to the axis of the telescopic barrel and on the pressure of the pressurized water.

The fracture features and performance of the head are similar to those of a single nozzle. At the same time, the productivity is 2.5 times higher, and the minimum values of energy intensity and specific water consumption are 1.2–1.5 times lower. Increasing the side nozzle diameter, e.g. from 15 to 23 mm, gives a 50% increase in productivity at fracture. The optimal angle of the side nozzle is 50°.

The relationship between the main parameters of the flooded jet and the productivity \((P_p) \) of the head is described by empirical dependence (Figure 10).

One way to improve fracture performance is to use a hydraulic monitor with a telescopic barrel. By delivering the fracture mechanism to the face with a telescopic shaft, the fracture range can be increased by the shaft length (up to 10 m) and the jet kinetic energy can be used effectively due to the nozzle constantly approaching the developing face.

The host rock destruction in the flooded face was tested by delivering the head to the massif with a telescopic shaft. During the tests, when the head was delivered to the face, the water pressure was 1.5 MPa, and when it was delivered back, it was 0.5 MPa. The destruction was done by sector approaches by undercutting the layer along the sole, made of the loosest rock. The undercutting roadway diameter stabilized and averaged 1.6–1.8 m in all tests.

One of the important aspects for the technology of mineral extraction is the calculation of the angle between two undercutting workings, which prevents the creation of an undestroyed pillar. With a cutting roadway width of 1.8 m and a chamber radius of 8–9 m, the optimal angle between approaches is 15°.

2. Conclusion

The modeling studies determined the distribution of the hydromonitor flow speed across the jet cross-sections in the pressure range of 0.4–1.6 MPa at a distance of up to 20 nozzle diameters. A linear expansion of the jet with an opening an-
A flow structure coefficient of 0.068 was also found for different initial water pressures. The hydraulic destruction dynamics of rocks containing amber was studied, where three stages of the fracture process with different channel sizes and extraction volume intensities were identified respectively at 27%, 57% and 16%. The telescopic hydraulic monitor allows increasing the destruction range up to 10 m with stabilization of the undercutting roadway diameter of 1.6…1.8m.
Literatura – References

172

Inżynieria Mineralna — Styczeń – Czerwiec 2024 January – June — Journal of the Polish Mineral Engineering Society

Modelowanie wpływu hydraulicznego pękania skał bursztynośnych przez zalewany strumień w komorze erozji na wydajność górnictwa

W artykule omówiono koncepcję rozwoju społeczno-gospodarczego i strategicznego obwodu rówieńskiego (Ukraina), w szczególności poszukiwania, badania i przemysłowej eksploatacji strategicznych zasobów mineralnych. Koncepcja zakłada zastosowanie energooszczędnych technologii wydobycia surowca, zwłaszcza ze złóż bursztynu. Autorzy zwracają uwagę, że konwencjonalne metody wydobywania bursztynu są szkodliwe dla środowiska i sugerują stosowanie metod skomplikowanych, takich jak technologie mechaniczne i hydrauliczne.

W artykule podjęto problematykę wyzwań związanych z wdrażaniem metod geotechnologicznych w przedsiębiorstwach górniczych oraz dokonano oceny ich złożoności w nauce i praktyce górniczej. Prowadzono badania naukowe w tym zakresie. Kompleksowe badania metod pobierania próbek i wydobywania bursztynu są nadal istotne z punktu widzenia interesu narodowego.

 Ponadto w artykule przedstawiono wyniki badań nad powstawaniem strumienia w monitorze hydraulicznym oraz zastosowania teleskopowego monitora hydraulicznego do poszerzania zasięgu fragmentacji skał, w tym analizę parametrów strumienia i dynamiki hydraulicznego kruszenia skał, m.in. skał bursztynońskich. Wnioski dotyczą rozszerzalności linii strumienia, zmniejszania się prędkości osiowej wraz ze wzrostem ciśnienia hydrostatycznego oraz skuteczności hydromonitora teleskopowego w zwiększaniu zasięgu fragmentacji.

Słowa kluczowe: bursztyn, hydromonitor, zanurzony strumień, zniszczenie, parametry